Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(9)2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37177294

RESUMEN

Multi-scale "rigid-soft" material coating has been an effective strategy for enhancing the interfacial shear strength (IFSS) of carbon fibers (CFs), which is one of the key themes in composite research. In this study, a soft material, chitosan (CS), and a rigid material, carbon nanotubes (CNTs), were sequentially grafted onto the CFs surface by a two-step amination reaction. The construction of the "rigid-soft" structure significantly increased the roughness and activity of the CFs surface, which improved the mechanical interlocking and chemical bonding between the CFs and resin. The interfacial shear strength (IFSS) of the CS- and CNT-modified CFs composites increased by 186.9% to 123.65 MPa compared to the desized fibers. In addition, the tensile strength of the modified CFs was also enhanced by 26.79% after coating with CS and CNTs. This strategy of establishing a "rigid-soft" gradient modulus interfacial layer with simple and non-destructive operation provides a valuable reference for obtaining high-performance CFs composites.

2.
ACS Omega ; 6(42): 27994-28003, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34722999

RESUMEN

A series of graphene oxide (GO)/lanthanum titanate (La2Ti2O7, LTO) fiber composites were prepared through a hydrothermal method. The LTO fibers were homogeneously dispersed between the GO sheets. The structure and micromorphology of the GO/LTO composites were systematically studied. The composite exhibited a high specific capacitance of 900.6 F g-1 at a current density of 1 A g-1 in the 1 M H2SO4 and 10 wt % sucrose aqueous solution as the electrolyte. With the extended potential window of 1.8 V, the fabricated asymmetric supercapacitor device delivered a maximum energy density of 94.0 Wh kg-1 at a power density of 750.1 W kg-1. The GO/LTO composites could be promising materials for energy storage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA