Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 253
Filtrar
1.
Nature ; 634(8032): 124-138, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39358518

RESUMEN

Connections between neurons can be mapped by acquiring and analysing electron microscopic brain images. In recent years, this approach has been applied to chunks of brains to reconstruct local connectivity maps that are highly informative1-6, but nevertheless inadequate for understanding brain function more globally. Here we present a neuronal wiring diagram of a whole brain containing 5 × 107 chemical synapses7 between 139,255 neurons reconstructed from an adult female Drosophila melanogaster8,9. The resource also incorporates annotations of cell classes and types, nerves, hemilineages and predictions of neurotransmitter identities10-12. Data products are available for download, programmatic access and interactive browsing and have been made interoperable with other fly data resources. We derive a projectome-a map of projections between regions-from the connectome and report on tracing of synaptic pathways and the analysis of information flow from inputs (sensory and ascending neurons) to outputs (motor, endocrine and descending neurons) across both hemispheres and between the central brain and the optic lobes. Tracing from a subset of photoreceptors to descending motor pathways illustrates how structure can uncover putative circuit mechanisms underlying sensorimotor behaviours. The technologies and open ecosystem reported here set the stage for future large-scale connectome projects in other species.


Asunto(s)
Encéfalo , Conectoma , Drosophila melanogaster , Vías Nerviosas , Neuronas , Animales , Femenino , Encéfalo/citología , Encéfalo/fisiología , Drosophila melanogaster/fisiología , Drosophila melanogaster/citología , Vías Eferentes/fisiología , Vías Eferentes/citología , Vías Nerviosas/fisiología , Vías Nerviosas/citología , Neuronas/clasificación , Neuronas/citología , Neuronas/fisiología , Neurotransmisores/metabolismo , Lóbulo Óptico de Animales no Mamíferos/citología , Lóbulo Óptico de Animales no Mamíferos/fisiología , Células Fotorreceptoras de Invertebrados/fisiología , Células Fotorreceptoras de Invertebrados/citología , Sinapsis/metabolismo , Retroalimentación Sensorial/fisiología
2.
Circ Res ; 135(8): 856-872, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39224974

RESUMEN

BACKGROUND: Chronic inflammation initiated by inflammatory monocytes underlies the pathogenesis of atherosclerosis. However, approaches that can effectively resolve chronic low-grade inflammation targeting monocytes are not readily available. The small chemical compound 4-phenylbutyric acid (4-PBA) exhibits broad anti-inflammatory effects in reducing atherosclerosis. Selective delivery of 4-PBA reprogrammed monocytes may hold novel potential in providing targeted and precision therapeutics for the treatment of atherosclerosis. METHODS: Systems analyses integrating single-cell RNA sequencing and complementary immunologic approaches characterized key resolving characteristics as well as defining markers of reprogrammed monocytes trained by 4-PBA. Molecular mechanisms responsible for monocyte reprogramming were assessed by integrated biochemical and genetic approaches. The intercellular propagation of homeostasis resolution was evaluated by coculture assays with donor monocytes trained by 4-PBA and recipient naive monocytes. The in vivo effects of monocyte resolution and atherosclerosis prevention by 4-PBA were assessed with the high-fat diet-fed ApoE-/- mouse model with IP 4-PBA administration. Furthermore, the selective efficacy of 4-PBA-trained monocytes was examined by IV transfusion of ex vivo trained monocytes by 4-PBA into recipient high-fat diet-fed ApoE-/- mice. RESULTS: In this study, we found that monocytes can be potently reprogrammed by 4-PBA into an immune-resolving state characterized by reduced adhesion and enhanced expression of anti-inflammatory mediator CD24. Mechanistically, 4-PBA reduced the expression of ICAM-1 (intercellular adhesion molecule 1) via reducing peroxisome stress and attenuating SYK (spleen tyrosine kinase)-mTOR (mammalian target of rapamycin) signaling. Concurrently, 4-PBA enhanced the expression of resolving mediator CD24 through promoting PPARγ (peroxisome proliferator-activated receptor γ) neddylation mediated by TOLLIP (toll-interacting protein). 4-PBA-trained monocytes can effectively propagate anti-inflammation activity to neighboring monocytes through CD24. Our data further demonstrated that 4-PBA-trained monocytes effectively reduce atherosclerosis pathogenesis when administered in vivo. CONCLUSIONS: Our study describes a robust and effective approach to generate resolving monocytes, characterizes novel mechanisms for targeted monocyte reprogramming, and offers a precision therapeutics for atherosclerosis based on delivering reprogrammed resolving monocytes.


Asunto(s)
Aterosclerosis , Inflamación , Monocitos , Fenilbutiratos , Animales , Aterosclerosis/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/patología , Aterosclerosis/prevención & control , Monocitos/metabolismo , Monocitos/efectos de los fármacos , Ratones , Inflamación/metabolismo , Fenilbutiratos/farmacología , Ratones Endogámicos C57BL , Humanos , Masculino , Molécula 1 de Adhesión Intercelular/metabolismo , Molécula 1 de Adhesión Intercelular/genética , Ratones Noqueados para ApoE , PPAR gamma/metabolismo , Reprogramación Celular/efectos de los fármacos , Células Cultivadas , Antiinflamatorios/farmacología
3.
Heliyon ; 10(15): e35529, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39166023

RESUMEN

Previously we have identified that the expression number and levels of oncogenes and antioncogenes are highly positively or negatively associated with major cellular progress in a cancer cell. However, we have not defined any cellular potentials of a human tumor cell at the level of the overall gene expression. Here, we counted the overall number of expression genes and overall counts of mRNA in depth and revealed that the expression levels of mRNA were directly associated with the expression number of genes in a human tumor cell. Gene expression networks revealed steady states of tricarboxylic acid (TCA) cycle and ATP production, differentiation potentials that might be disturbed and blocked by uncertain gene expressing networks, and potential capabilities to undergo epithelial-mesenchymal transition (EMT), neurogenesis, angiogenesis, inflammatory response, immune evasion, and metastasis in a human tumor cell. Our analysis identifies unpredictable gene expression characteristics in human tumor cells. The results might profoundly influence mechanisms how a human tumor cell generates and undergoes its progresses.

4.
Huan Jing Ke Xue ; 45(8): 4847-4859, 2024 Aug 08.
Artículo en Chino | MEDLINE | ID: mdl-39168701

RESUMEN

Studying the status and source analysis of heavy metal pollution in farmland in typical mining and processing areas is an important prerequisite for promoting farmland soil ecological restoration and farmland protection in concentrated mining areas. In this study, the heavy metal content of farmland soil around a mining area in southwest China was detected, and the pollution status, distribution law, health risks, and sources of heavy metals were studied by using the land accumulation index method, comprehensive pollution index method, kriging interpolation method, health risk assessment method, and PMF receptor model on the sampling data. The results showed that the mean values of eight heavy metals in farmland soil except Ni exceeded the local soil background values, and the results of the ground accumulation index evaluation showed that Cd and Hg were extremely polluted; Pb and As showed medium pollution-heavy pollution; and Cr, Zn, Ni, and Cu were lightly polluted. In the health risk assessment, oral ingestion was the main exposure route posing a health risk to the human body; the main element that constituted non-carcinogenic health risks was As, and the carcinogenic risks were from As and Cd. PMF model analysis showed that the contribution rate of weathering natural sources of iron-bearing ore was 28.02%, and the main factors were Ca and Fe. The contribution rate of agricultural sources was 3.02%, and the main factors were Pb and As. The contribution rate of industrial and atmospheric deposition composite sources was 33.09%, and the main factor was Hg. The contribution rate of the parent material source was 17.27%, and the main factor was Ca. The contribution rate of mining activities such as mining and smelting was 18.60%, and the main factors were Zn and Cd.


Asunto(s)
Monitoreo del Ambiente , Metales Pesados , Minería , Contaminantes del Suelo , Estaño , Metales Pesados/análisis , Contaminantes del Suelo/análisis , China , Medición de Riesgo , Estaño/análisis , Productos Agrícolas/crecimiento & desarrollo
5.
Nat Commun ; 15(1): 6860, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127683

RESUMEN

Serial section transmission electron microscopy (TEM) has proven to be one of the leading methods for millimeter-scale 3D imaging of brain tissues at nanoscale resolution. It is important to further improve imaging efficiency to acquire larger and more brain volumes. We report here a threefold increase in the speed of TEM by using a beam deflecting mechanism to enable highly efficient acquisition of multiple image tiles (nine) for each motion of the mechanical stage. For millimeter-scale areas, the duty cycle of imaging doubles to more than 30%, yielding a net average imaging rate of 0.3 gigapixels per second. If fully utilized, an array of four beam deflection TEMs should be capable of imaging a dataset of cubic millimeter scale in five weeks.

6.
J Pathol ; 264(3): 250-269, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39161125

RESUMEN

Testicular tumors represent the most common malignancy among young men. Nevertheless, the pathogenesis and molecular underpinning of testicular tumors remain largely elusive. We aimed to delineate the intricate intra-tumoral heterogeneity and the network of intercellular communication within the tumor microenvironment. A total of 40,760 single-cell transcriptomes were analyzed, encompassing samples from six individuals with seminomas, two patients with mixed germ cell tumors, one patient with a Leydig cell tumor, and three healthy donors. Five distinct malignant subclusters were identified in the constructed landscape. Among them, malignant 1 and 3 subclusters were associated with a more immunosuppressive state and displayed worse disease-free survival. Further analysis identified that APP-CD74 interactions were significantly strengthened between malignant 1 and 3 subclusters and 14 types of immune subpopulations. In addition, we established an aberrant spermatogenesis trajectory and delineated the global gene alterations of somatic cells in seminoma testes. Sertoli cells were identified as the somatic cell type that differed the most from healthy donors to seminoma testes. Cellular communication between spermatogonial stem cells and Sertoli cells is disturbed in seminoma testes. Our study delineates the intra-tumoral heterogeneity and the tumor immune microenvironment in testicular tumors, offering novel insights for targeted therapy. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Perfilación de la Expresión Génica , Análisis de la Célula Individual , Neoplasias Testiculares , Microambiente Tumoral , Humanos , Masculino , Neoplasias Testiculares/genética , Neoplasias Testiculares/patología , Neoplasias Testiculares/inmunología , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Perfilación de la Expresión Génica/métodos , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/metabolismo , Transcriptoma , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Seminoma/genética , Seminoma/patología , Seminoma/inmunología , Tolerancia Inmunológica/genética , Neoplasias de Células Germinales y Embrionarias/genética , Neoplasias de Células Germinales y Embrionarias/patología , Neoplasias de Células Germinales y Embrionarias/inmunología , Antígenos de Diferenciación de Linfocitos B
7.
Front Chem ; 12: 1426865, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39036659

RESUMEN

Introduction: Smart multifunctional surfaces targeting intricate biological events or versatile therapeutic strategies are imminent to achieve long-term transmucosal implant success. Methods: This study used dopamine (DA), graphene oxide (GO), and type IV collagen (COL-IV) to construct multilayer nanofilms (DGCn) based on their universal adhesive and biomimetic properties to design a versatile and bioactive titanium implant. The characterization of DGCn on different titanium surfaces was performed, and its loading capacity, release profile, in situ gene delivery, and in vitro biological properties were preliminarily evaluated. Results: Our results demonstrate that hydrogenated TiO2 nanotubes (H) provide a better platform for the DGCn coating than machined Ti and air-TiO2 nanotubes. The H-DGC10 displayed the most stable surface with excellent loading capacity, sustained-release profile, and in situ gene transfection efficiency; this could be due to the high specific surface area of H and GO, as well as the functional groups in H, DA, and GO. Moreover, the H-DGC10 exhibited good biocompatibility for human oral epithelial cells and promoted the expression of integrin ß4 and laminin 332, both being hemidesmosome-related proteins. Discussion: Our findings suggest that H-DGCn can be designed as a smart multifunctional interface for titanium implants to achieve long-term transmucosal implant success and aid in versatile therapeutic strategies.

8.
Autoimmunity ; 57(1): 2378876, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39014962

RESUMEN

Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by immune system dysfunction that can lead to serious health issues and mortality. Recent investigations highlight the role of gut microbiota alterations in modulating inflammation and disease severity in SLE. This review specifically summaries the variations in gut microbiota composition across various murine models of lupus. By focusing on these differences, we aim to elucidate the intricate relationship between gut microbiota dysbiosis and the development and progression of SLE in preclinical settings.


Asunto(s)
Modelos Animales de Enfermedad , Disbiosis , Microbioma Gastrointestinal , Lupus Eritematoso Sistémico , Animales , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/microbiología , Microbioma Gastrointestinal/inmunología , Ratones , Disbiosis/inmunología , Disbiosis/microbiología , Humanos
9.
RSC Adv ; 14(30): 21241-21249, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38974227

RESUMEN

Cardiovascular diseases caused by atherosclerosis (AS) seriously damage human health. Nano-photothermal technology has been proven to inhibit the development of vascular inflammation by inhibiting the proliferation of inflammatory macrophages. However, photothermal therapy can inhibit the enrichment of AS macrophages in the early stage, but the inhibitory effect is insufficient in the later stage. Herein, we designed and prepared CoS1.097 nanocrystals by a simple hydrothermal method as new nanoplatforms for efficient photothermal therapy of arterial inflammation. CoS1.097 nanocrystals exhibited the degradability to release the cobalt ions, and can inhibit the proliferation of macrophages both in vitro and in vivo resulting from the slowly released cobalt ions. Moreover, CoS1.097 nanocrystals showed intense absorption in the NIR region, thus showing excellent photothermal performance. When irradiated by an 808 nm laser, the photothermal effect of CoS1.097 nanocrystals can more efficiently kill the macrophages which play an important role in the development of atherosclerosis. As far as we know, this is the first work on CoS1.097 nanocrystals for photothermal therapy of arterial inflammation.

11.
BMC Oral Health ; 24(1): 824, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033148

RESUMEN

BACKGROUND: Excessive inflammation is a major cause of implant failure. The surface morphology, hydrophilicity, and loading of biomaterials are major properties modulating anti-inflammatory macrophage activation. This paper investigates the regulatory effects of modifying the surface of Titanium dioxide nanotubes (TNTs) with graphene oxide (GO) on the polarization of mouse monocyte macrophages (RAW264.7). METHODS: TNT was produced by the anodic oxidation of titanium. GO was subsequently electrodeposited on the TNT to obtain a TNT-GO composite. The samples were characterised through scanning electron microscopy (SEM), Raman spectroscopy, and X-ray diffraction. RAW264.7 cells were separately seeded onto the surface of three groups of samples: pure Ti, TNT, and TNT-GO. Under the condition of lipopolysaccharide stimulation, the influence of the sample surfaces on the gene expression profiles was investigated through RNA sequence analysis. In addition, cell spreading was observed through SEM, cell adhesion and proliferation were analysed using the CCK8 assay, and the expression of inflammation-related factors was investigated by ELISA and cellular immunofluorescence staining. The production of reactive oxygen species (ROS) in the RAW264.7 cells on the surface of the three groups was detected via immunofluorescence staining. RESULTS: The CCK8 results indicated that the adhesion and proliferation of the RAW264.7 cells were reduced on the TNT and TNT-GO surfaces. ELISA results revealed significant differences in the pro-inflammatory factors tumour necrosis factor-α and interleukin-6 secretion among the three groups at 24 h (p < 0.05). The secretion of pro-inflammatory factors significantly reduced and the expression of anti-inflammatory factor IL-10 increased on the TNT and TNT-GO surfaces. The RNA sequencing, ELISA, and cell immunofluorescence staining test results suggested that the inflammatory response of M1 polarization was reduced and the M2 polarization of macrophages was induced on the TNT-GO surface, which may be attributed to the reduction in ROS production. CONCLUSIONS: Under lipopolysaccharide stimulation, the inflammatory response of the RAW264.7 cells was reduced and the M2 polarization of macrophages was promoted on the TNT-GO surface, which may be caused by the reduced ROS production. Consequently, the designed TNT-GO material is promising for implants owing to its excellent inflammation regulation ability.


Asunto(s)
Grafito , Macrófagos , Nanotubos , Especies Reactivas de Oxígeno , Titanio , Grafito/farmacología , Animales , Ratones , Macrófagos/efectos de los fármacos , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Inflamación , Adhesión Celular/efectos de los fármacos , Propiedades de Superficie , Lipopolisacáridos , Microscopía Electrónica de Rastreo , Proliferación Celular/efectos de los fármacos , Espectrometría Raman , Difracción de Rayos X , Activación de Macrófagos/efectos de los fármacos
12.
Genome Biol ; 25(1): 148, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38845023

RESUMEN

BACKGROUND: Sheep and goats have undergone domestication and improvement to produce similar phenotypes, which have been greatly impacted by structural variants (SVs). Here, we report a high-quality chromosome-level reference genome of Asiatic mouflon, and implement a comprehensive analysis of SVs in 897 genomes of worldwide wild and domestic populations of sheep and goats to reveal genetic signatures underlying convergent evolution. RESULTS: We characterize the SV landscapes in terms of genetic diversity, chromosomal distribution and their links with genes, QTLs and transposable elements, and examine their impacts on regulatory elements. We identify several novel SVs and annotate corresponding genes (e.g., BMPR1B, BMPR2, RALYL, COL21A1, and LRP1B) associated with important production traits such as fertility, meat and milk production, and wool/hair fineness. We detect signatures of selection involving the parallel evolution of orthologous SV-associated genes during domestication, local environmental adaptation, and improvement. In particular, we find that fecundity traits experienced convergent selection targeting the gene BMPR1B, with the DEL00067921 deletion explaining ~10.4% of the phenotypic variation observed in goats. CONCLUSIONS: Our results provide new insights into the convergent evolution of SVs and serve as a rich resource for the future improvement of sheep, goats, and related livestock.


Asunto(s)
Cabras , Animales , Cabras/genética , Ovinos/genética , Evolución Molecular , Variación Estructural del Genoma , Sitios de Carácter Cuantitativo , Genoma , Variación Genética , Domesticación , Fenotipo , Selección Genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética
13.
Nature ; 631(8020): 360-368, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38926570

RESUMEN

A deep understanding of how the brain controls behaviour requires mapping neural circuits down to the muscles that they control. Here, we apply automated tools to segment neurons and identify synapses in an electron microscopy dataset of an adult female Drosophila melanogaster ventral nerve cord (VNC)1, which functions like the vertebrate spinal cord to sense and control the body. We find that the fly VNC contains roughly 45 million synapses and 14,600 neuronal cell bodies. To interpret the output of the connectome, we mapped the muscle targets of leg and wing motor neurons using genetic driver lines2 and X-ray holographic nanotomography3. With this motor neuron atlas, we identified neural circuits that coordinate leg and wing movements during take-off. We provide the reconstruction of VNC circuits, the motor neuron atlas and tools for programmatic and interactive access as resources to support experimental and theoretical studies of how the nervous system controls behaviour.


Asunto(s)
Conectoma , Drosophila melanogaster , Neuronas Motoras , Tejido Nervioso , Vías Nerviosas , Sinapsis , Animales , Femenino , Conjuntos de Datos como Asunto , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Drosophila melanogaster/ultraestructura , Extremidades/fisiología , Extremidades/inervación , Holografía , Microscopía Electrónica , Neuronas Motoras/citología , Neuronas Motoras/fisiología , Neuronas Motoras/ultraestructura , Movimiento , Músculos/inervación , Músculos/fisiología , Tejido Nervioso/anatomía & histología , Tejido Nervioso/citología , Tejido Nervioso/fisiología , Tejido Nervioso/ultraestructura , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Vías Nerviosas/ultraestructura , Sinapsis/fisiología , Sinapsis/ultraestructura , Tomografía por Rayos X , Alas de Animales/inervación , Alas de Animales/fisiología
14.
Nature ; 631(8020): 369-377, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38926579

RESUMEN

Animal movement is controlled by motor neurons (MNs), which project out of the central nervous system to activate muscles1. MN activity is coordinated by complex premotor networks that facilitate the contribution of individual muscles to many different behaviours2-6. Here we use connectomics7 to analyse the wiring logic of premotor circuits controlling the Drosophila leg and wing. We find that both premotor networks cluster into modules that link MNs innervating muscles with related functions. Within most leg motor modules, the synaptic weights of each premotor neuron are proportional to the size of their target MNs, establishing a circuit basis for hierarchical MN recruitment. By contrast, wing premotor networks lack proportional synaptic connectivity, which may enable more flexible recruitment of wing steering muscles. Through comparison of the architecture of distinct motor control systems within the same animal, we identify common principles of premotor network organization and specializations that reflect the unique biomechanical constraints and evolutionary origins of leg and wing motor control.


Asunto(s)
Conectoma , Drosophila melanogaster , Extremidades , Neuronas Motoras , Vías Nerviosas , Sinapsis , Alas de Animales , Animales , Femenino , Masculino , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Extremidades/inervación , Extremidades/fisiología , Neuronas Motoras/fisiología , Movimiento/fisiología , Músculos/inervación , Músculos/fisiología , Red Nerviosa/anatomía & histología , Red Nerviosa/citología , Red Nerviosa/fisiología , Vías Nerviosas/anatomía & histología , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Sinapsis/fisiología , Alas de Animales/inervación , Alas de Animales/fisiología
15.
iScience ; 27(6): 110097, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38883832

RESUMEN

Systemic neutrophil dysregulation contributes to atherosclerosis pathogenesis, and restoring neutrophil homeostasis may be beneficial for treating atherosclerosis. Herein, we report that a homeostatic resolving subset of neutrophils exists in mice and humans characterized by the low expression of TRAM, correlated with reduced expression of inflammatory mediators (leukotriene B4 [LTB4] and elastase) and elevated expression of anti-inflammatory resolving mediators (resolvin D1 [RvD1] and CD200R). TRAM-deficient neutrophils can potently improve vascular integrity and suppress atherosclerosis pathogenesis when adoptively transfused into recipient atherosclerotic animals. Mechanistically, we show that TRAM deficiency correlates with reduced expression of 5-lipoxygenase (LOX5) activating protein (LOX5AP), dislodges nuclear localization of LOX5, and switches the lipid mediator secretion from pro-inflammatory LTB4 to pro-resolving RvD1. TRAM also serves as a stress sensor of oxidized low-density lipoprotein (oxLDL) and/or free cholesterol and triggers inflammatory signaling processes that facilitate elastase release. Together, our study defines a unique neutrophil population characterized by reduced TRAM, capable of homeostatic resolution and treatment of atherosclerosis.

16.
Biosci Biotechnol Biochem ; 88(7): 776-783, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38714325

RESUMEN

Atherosclerosis (AS) is the major cause of multiple cardiovascular diseases. In addition, the lipid accumulation of human vascular smooth muscle cells (HVSMCs) can cause the occurrence of AS. Secreted frizzled-related protein 5 (Sfrp5) was known to be downregulated in AS; however, the detailed function of Sfrp5 in HVSMCs remains unclear. Specifically, we found that Sfrp5 expression in oxLDL-treated HVSMCs was downregulated. Sfrp5 overexpression inhibited the viability of HVSMCs induced by oxLDL. In addition, oxLDL-induced proliferation and migration in HVSMCs were abolished by Sfrp5 overexpression. Sfrp5 overexpression reduced oxLDL-caused oxidative stress, lipid accumulation, and inflammation in HVSMCs. Meanwhile, oxLDL treatment increased the expressions of Wnt5a, c-Myc, and ß-catenin in HVSMCs, while this phenomenon was rescued by Sfrp5 overexpression. Furthermore, the inhibitory effect of Sfrp5 upregulation on the viability and migration of HVSMCs was reversed by R-spondin 1. These results indicate that Sfrp5 overexpression could reverse oxLDL-induced lipid accumulation in HVSMCs through inactivating Wnt5a/ß-catenin signaling pathway.


Asunto(s)
Movimiento Celular , Metabolismo de los Lípidos , Lipoproteínas LDL , Músculo Liso Vascular , Miocitos del Músculo Liso , Proteína Wnt-5a , Humanos , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacología , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citología , Proteína Wnt-5a/metabolismo , Proteína Wnt-5a/genética , Movimiento Celular/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Estrés Oxidativo , beta Catenina/metabolismo , beta Catenina/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Aterosclerosis/metabolismo , Aterosclerosis/genética , Aterosclerosis/patología , Transducción de Señal
17.
Talanta ; 276: 126251, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38761657

RESUMEN

Monitoring of glutathione has attracted considerable attention owing to its biological and clinical significance. An eco-friendly, economic, simple, biocompatible probe with excellent sensitivity and selectivity is very important. Herein, FeOOH QD@ATP-BODIPY nanocomposite was fabricated from one-step synthesized FeOOH quantum dots (FeOOH QD) and commercial boron-dipyrromethene-conjugated adenosine 5'-triphosphate (ATP-BODIPY) for glutathione (GSH) sensing in solutions and living cells. Three fascinate merits of FeOOH QD were confirmed: (a) as fluorescence quencher for ATP-BODIPY, (b) as selective recognizer of GSH and (c) with carrier effects and membrane permeability. The construction and response mechanism of the nanocomposite was based on the competitive coordination chemistry and redox reaction of FeOOH QD between GSH and phosphate group of ATP-BODIPY. Under the optimal conditions, the detection limit for GSH was as low as 68.8 nM. Excellent linear range of 0.2-400 µM was obtained. Furthermore, the chemical response of the nanocomposite exhibits high selectivity toward GSH over other electrolytes and biomolecules. It was successfully applied for GSH determination in human serum samples. The MTT assay exhibited FeOOH QD@ATP-BODIPY nanocomposite own good biocompatibility. FeOOH QD@ATP-BODIPY respond to GSH in living cells in situ was also proved via fluorescence imaging. These suggested that the FeOOH QD@ATP-BODIPY nanocomposite had potential application in biological and clinical applications.


Asunto(s)
Adenosina Trifosfato , Compuestos de Boro , Glutatión , Nanocompuestos , Puntos Cuánticos , Compuestos de Boro/química , Glutatión/análisis , Glutatión/química , Humanos , Adenosina Trifosfato/análisis , Adenosina Trifosfato/sangre , Adenosina Trifosfato/química , Nanocompuestos/química , Puntos Cuánticos/química , Materiales Biocompatibles/química , Células HeLa , Colorantes Fluorescentes/química , Límite de Detección , Compuestos Férricos/química , Imagen Óptica
18.
Angew Chem Int Ed Engl ; 63(24): e202320223, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38588224

RESUMEN

Structurally ordered soft materials that respond to complementary stimuli are susceptible to control over their spatial and temporal morphostructural configurations by intersectional or combined effects such as gating, feedback, shape-memory, or programming. In the absence of general and robust design and prediction strategies for their mechanical properties, at present, combined chemical and crystal engineering approaches could provide useful guidelines to identify effectors that determine both the magnitude and time of their response. Here, we capitalize on the purported ability of soft intermolecular interactions to instigate mechanical compliance by using halogenation to elicit both mechanical and photochemical activity of organic crystals. Starting from (E)-1,4-diphenylbut-2-ene-1,4-dione, whose crystals are brittle and photoinert, we use double and quadruple halogenation to introduce halogen-bonded planes that become interfaces for molecular gliding, rendering the material mechanically and photochemically plastic. Fluorination diversifies the mechanical effects further, and crystals of the tetrafluoro derivative are not only elastic but also motile, displaying the rare photosalient effect.

19.
Front Immunol ; 15: 1326370, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38566993

RESUMEN

Background: While a few case-control studies indicated a possible correlation of IgG N-glycosylation patterns with pancreatitis, their restricted sample sizes and methodologies prevented conclusive insights into causality or distinguishing traits across pancreatitis types. Method: We conducted a two-sample Mendelian Randomization (MR) analysis to investigate the causal relationship between 77 IgG N-glycosylation traits and various types of pancreatitis, including acute pancreatitis (AP), chronic pancreatitis (CP), alcohol acute pancreatitis (AAP), and alcohol chronic pancreatitis (ACP). This analysis utilized summary-level data from genome-wide association studies (GWAS), employing methods such as IVW, MR-Egger, and weighted median. To ensure the robustness of our findings, several sensitivity analyses, including Cochran's Q statistic, leave-one-out, MR-Egger intercept, and MR-PRESSO global test were conducted. Result: Our study uncovered the causal relationship between specific IgG N-glycosylation traits and various types of pancreatitis. Notably, an increase in genetically predicted IGP7 levels was associated with a decreased risk of developing AP. For CP, our data suggested a protective effect associated with higher levels of both IGP7 and IGP31, contrasting with increased levels of IGP27 and IGP65, which were linked to a heightened risk. Moreover, in the case of AAP, elevated IGP31 levels were causatively associated with a lower incidence, while higher IGP26 levels correlated with an increased risk for ACP. Conclusion: This study establishes causal relationship between specific IgG N-glycosylation patterns and varying risks of different pancreatitis forms, underscoring their potential as predictive biomarkers. These findings necessitate further exploration into the underlying mechanisms, promising to inform more personalized diagnostic and therapeutic strategies in pancreatitis management.


Asunto(s)
Inmunoglobulina G , Pancreatitis Crónica , Humanos , Enfermedad Aguda , Etanol , Estudio de Asociación del Genoma Completo , Glicosilación , Pancreatitis Crónica/genética , Análisis de la Aleatorización Mendeliana
20.
BJU Int ; 134(1): 72-80, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38459675

RESUMEN

OBJECTIVES: To investigate the ability of propolis-coated ureteric stents to solve complications, especially urinary tract infections (UTIs) and crusting, in patients with long-term indwelling ureteric stents through antimicrobial and anti-calculus activities. MATERIALS AND METHODS: Polyurethane (PU) ureteric stents were immersed in the ethanol extract of propolis (EEP), a well-known antimicrobial honeybee product, and subjected to chemical, hydrophilic, and seismic tests. The antimicrobial activity of the EEP coating was then examined by in vitro investigation. Proteus mirabilis infection was induced in rats within uncoated and EEP-coated groups, and the infection, stone formation, and inflammation were monitored at various time points. RESULTS: The characterisation results showed that the hydrophilicity and stability of the EEP surface improved. In vitro tests revealed that the EEP coating was biocompatible, could eliminate >90% of bacteria biofilms attached to the stent and could maintain bacteriostatic properties for up to 3 months. The in vivo experiment revealed that the EEP-coating significantly reduced the amount of bacteria, stones, and salt deposits on the surface of the ureteric stents and decreased inflammation in the host tissue. CONCLUSIONS: Compared with clinically used PU stents, EEP-coated ureteric stents could better mitigate infections and prevent encrustation. Thus, this study demonstrated that propolis is a promising natural dressing material for ureteric stents.


Asunto(s)
Antibacterianos , Materiales Biocompatibles Revestidos , Própolis , Stents , Uréter , Animales , Ratas , Própolis/farmacología , Antibacterianos/farmacología , Materiales Biocompatibles Revestidos/farmacología , Proteus mirabilis/efectos de los fármacos , Masculino , Infecciones Urinarias/prevención & control , Ratas Sprague-Dawley , Biopelículas/efectos de los fármacos , Infecciones por Proteus/prevención & control , Poliuretanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA