Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Am J Hum Genet ; 111(4): 742-760, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38479391

RESUMEN

FRY-like transcription coactivator (FRYL) belongs to a Furry protein family that is evolutionarily conserved from yeast to humans. The functions of FRYL in mammals are largely unknown, and variants in FRYL have not previously been associated with a Mendelian disease. Here, we report fourteen individuals with heterozygous variants in FRYL who present with developmental delay, intellectual disability, dysmorphic features, and other congenital anomalies in multiple systems. The variants are confirmed de novo in all individuals except one. Human genetic data suggest that FRYL is intolerant to loss of function (LoF). We find that the fly FRYL ortholog, furry (fry), is expressed in multiple tissues, including the central nervous system where it is present in neurons but not in glia. Homozygous fry LoF mutation is lethal at various developmental stages, and loss of fry in mutant clones causes defects in wings and compound eyes. We next modeled four out of the five missense variants found in affected individuals using fry knockin alleles. One variant behaves as a severe LoF variant, whereas two others behave as partial LoF variants. One variant does not cause any observable defect in flies, and the corresponding human variant is not confirmed to be de novo, suggesting that this is a variant of uncertain significance. In summary, our findings support that fry is required for proper development in flies and that the LoF variants in FRYL cause a dominant disorder with developmental and neurological symptoms due to haploinsufficiency.


Asunto(s)
Discapacidad Intelectual , Anomalías Musculoesqueléticas , Animales , Niño , Humanos , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/diagnóstico , Discapacidad Intelectual/genética , Mamíferos , Anomalías Musculoesqueléticas/genética , Mutación Missense , Factores de Transcripción/genética , Drosophila
2.
Genet Med ; 26(7): 101125, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38522068

RESUMEN

PURPOSE: YKT6 plays important roles in multiple intracellular vesicle trafficking events but has not been associated with Mendelian diseases. METHODS: We report 3 unrelated individuals with rare homozygous missense variants in YKT6 who exhibited neurological disease with or without a progressive infantile liver disease. We modeled the variants in Drosophila. We generated wild-type and variant genomic rescue constructs of the fly ortholog dYkt6 and compared their ability in rescuing the loss-of-function phenotypes in mutant flies. We also generated a dYkt6KozakGAL4 allele to assess the expression pattern of dYkt6. RESULTS: Two individuals are homozygous for YKT6 [NM_006555.3:c.554A>G p.(Tyr185Cys)] and exhibited normal prenatal course followed by failure to thrive, developmental delay, and progressive liver disease. Haplotype analysis identified a shared homozygous region flanking the variant, suggesting a common ancestry. The third individual is homozygous for YKT6 [NM_006555.3:c.191A>G p.(Tyr64Cys)] and exhibited neurodevelopmental disorders and optic atrophy. Fly dYkt6 is essential and is expressed in the fat body (analogous to liver) and central nervous system. Wild-type genomic rescue constructs can rescue the lethality and autophagic flux defects, whereas the variants are less efficient in rescuing the phenotypes. CONCLUSION: The YKT6 variants are partial loss-of-function alleles, and the p.(Tyr185Cys) is more severe than p.(Tyr64Cys).

3.
medRxiv ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38260438

RESUMEN

Phospholipase C isozymes (PLCs) hydrolyze phosphatidylinositol 4,5-bisphosphate into inositol 1,4,5-trisphosphate and diacylglycerol, important signaling molecules involved in many cellular processes. PLCG1 encodes the PLCγ1 isozyme that is broadly expressed. Hyperactive somatic mutations of PLCG1 are observed in multiple cancers, but only one germline variant has been reported. Here we describe three unrelated individuals with de novo heterozygous missense variants in PLCG1 (p.Asp1019Gly, p.His380Arg, and p.Asp1165Gly) who exhibit variable phenotypes including hearing loss, ocular pathology and cardiac septal defects. To model these variants in vivo, we generated the analogous variants in the Drosophila ortholog, small wing (sl). We created a null allele slT2A and assessed the expression pattern. sl is broadly expressed, including in wing discs, eye discs, and a subset of neurons and glia. Loss of sl causes wing size reductions, ectopic wing veins and supernumerary photoreceptors. We document that mutant flies exhibit a reduced lifespan and age-dependent locomotor defects. Expressing wild-type sl in slT2A mutant rescues the loss-of-function phenotypes whereas expressing the variants causes lethality. Ubiquitous overexpression of the variants also reduces viability, suggesting that the variants are toxic. Ectopic expression of an established hyperactive PLCG1 variant (p.Asp1165His) in the wing pouch causes severe wing phenotypes, resembling those observed with overexpression of the p.Asp1019Gly or p.Asp1165Gly variants, further arguing that these two are gain-of-function variants. However, the wing phenotypes associated with p.His380Arg overexpression are mild. Our data suggest that the PLCG1 de novo heterozygous missense variants are pathogenic and contribute to the features observed in the probands.

4.
Elife ; 122023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38079206

RESUMEN

Protein UFMylation downstream of the E1 enzyme UBA5 plays essential roles in development and endoplasmic reticulum stress. Variants in the UBA5 gene are associated with developmental and epileptic encephalopathy 44 (DEE44), an autosomal recessive disorder characterized by early-onset encephalopathy, movement abnormalities, global developmental delay, intellectual disability, and seizures. DEE44 is caused by at least 12 different missense variants described as loss of function (LoF), but the relationships between genotypes and molecular or clinical phenotypes remain to be established. We developed a humanized UBA5 fly model and biochemical activity assays in order to describe in vivo and in vitro genotype-phenotype relationships across the UBA5 allelic series. In vivo, we observed a broad spectrum of phenotypes in viability, developmental timing, lifespan, locomotor activity, and bang sensitivity. A range of functional effects was also observed in vitro across comprehensive biochemical assays for protein stability, ATP binding, UFM1 activation, and UFM1 transthiolation. Importantly, there is a strong correlation between in vivo and in vitro phenotypes, establishing a classification of LoF variants into mild, intermediate, and severe allelic strengths. By systemically evaluating UBA5 variants across in vivo and in vitro platforms, this study provides a foundation for more basic and translational UBA5 research, as well as a basis for evaluating current and future individuals afflicted with this rare disease.


Although rare diseases only impact a small fraction of the population, they still affect hundreds of millions of people around the world. Many of these conditions are caused by variations in inherited genetic material, which nowadays can be readily detected using advanced sequencing technologies. However, establishing a connection between these genetic changes and the disease they cause often requires further in-depth study. One such rare inherited disorder is developmental and epileptic encephalopathy type 44 (DEE44), which is caused by genetic variations within the gene for UBA5 (short for ubiquitin-like modifier activating enzyme 5). For DEE44 to occur, both copies of the gene for UBA5, known as alleles, must contain one or more detrimental variation. Although all these variations prevent UBA5 from working correctly, the level of disruption they cause, known as allelic strength, varies between them. However, it remained unclear whether the severity of the DEE44 disease directly corresponds with the allelic strength of these variants. To answer this question, Pan et al. tested how different genetic variants found in patients with DEE44 affected the behavior and health of fruit flies. These results were then compared against in vitro biochemical assays testing how alleles containing these variants impacted the function of UBA5. When the fly gene for the enzyme was replaced with the human gene containing variations associated with DEE44, flies exhibited changes in their survival rates, developmental progress, lifespan, and neurological well-being. However, not all of the variants caused ill effects. Using this information, the patient variants were classified into three categories based on the severity of their effect: mild, intermediate, and severe. Biochemical assays supported this classification and revealed that the variants that caused more severe symptoms tended to inhibit the activity of UBA5 more significantly. Pan et al. further analyzed the nature of the variants in the patients and showed that most patients typically carried one mild and one strong variant, although some individuals did have two intermediate variants. Notably, no patients carried two severe variants. This indicates that DEE44 is the result of UBA5 only partially losing its ability to work correctly. The study by Pan et al. provides a framework for assessing the impact of genetic variants associated with DEE44, aiding the diagnosis and treatment of the disorder. However, further research involving more patients, more detailed clinical data, and testing other newly identified DEE44-causing variants is needed to solidify the correlation between allelic strength and disease severity.


Asunto(s)
Encefalopatías , Discapacidad Intelectual , Trastornos del Movimiento , Enzimas Activadoras de Ubiquitina , Humanos , Encefalopatías/genética , Discapacidad Intelectual/genética , Trastornos del Movimiento/genética , Mutación Missense , Enzimas Activadoras de Ubiquitina/genética , Enzimas Activadoras de Ubiquitina/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética
5.
medRxiv ; 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37502976

RESUMEN

Protein UFMylation downstream of the E1 enzyme UBA5 plays essential roles in development and ER stress. Variants in the UBA5 gene are associated with developmental and epileptic encephalopathy 44 (DEE44), an autosomal recessive disorder characterized by early-onset encephalopathy, movement abnormalities, global developmental delay, intellectual disability, and seizures. DEE44 is caused by at least twelve different missense variants described as loss of function (LoF), but the relationships between genotypes and molecular or clinical phenotypes remains to be established. We developed a humanized UBA5 fly model and biochemical activity assays in order to describe in vivo and in vitro genotype-phenotype relationships across the UBA5 allelic series. In vivo, we observed a broad spectrum of phenotypes in viability, developmental timing, lifespan, locomotor activity, and bang sensitivity. A range of functional effects was also observed in vitro across comprehensive biochemical assays for protein stability, ATP binding, UFM1 activation, and UFM1 transthiolation. Importantly, there is a strong correlation between in vivo and in vitro phenotypes, establishing a classification of LoF variants into mild, intermediate, and severe allelic strengths. By systemically evaluating UBA5 variants across in vivo and in vitro platforms, this study provides a foundation for more basic and translational UBA5 research, as well as a basis for evaluating current and future individuals afflicted with this rare disease.

6.
Cell Rep ; 42(8): 112842, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37480566

RESUMEN

Development of effective therapies against SARS-CoV-2 infections relies on mechanistic knowledge of virus-host interface. Abundant physical interactions between viral and host proteins have been identified, but few have been functionally characterized. Harnessing the power of fly genetics, we develop a comprehensive Drosophila COVID-19 resource (DCR) consisting of publicly available strains for conditional tissue-specific expression of all SARS-CoV-2 encoded proteins, UAS-human cDNA transgenic lines encoding established host-viral interacting factors, and GAL4 insertion lines disrupting fly homologs of SARS-CoV-2 human interacting proteins. We demonstrate the utility of the DCR to functionally assess SARS-CoV-2 genes and candidate human binding partners. We show that NSP8 engages in strong genetic interactions with several human candidates, most prominently with the ATE1 arginyltransferase to induce actin arginylation and cytoskeletal disorganization, and that two ATE1 inhibitors can reverse NSP8 phenotypes. The DCR enables parallel global-scale functional analysis of SARS-CoV-2 components in a prime genetic model system.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Animales , SARS-CoV-2/genética , Drosophila , Actinas , Animales Modificados Genéticamente
7.
Cell Metab ; 35(5): 855-874.e5, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37084732

RESUMEN

VLCFAs (very-long-chain fatty acids) are the most abundant fatty acids in myelin. Hence, during demyelination or aging, glia are exposed to higher levels of VLCFA than normal. We report that glia convert these VLCFA into sphingosine-1-phosphate (S1P) via a glial-specific S1P pathway. Excess S1P causes neuroinflammation, NF-κB activation, and macrophage infiltration into the CNS. Suppressing the function of S1P in fly glia or neurons, or administration of Fingolimod, an S1P receptor antagonist, strongly attenuates the phenotypes caused by excess VLCFAs. In contrast, elevating the VLCFA levels in glia and immune cells exacerbates these phenotypes. Elevated VLCFA and S1P are also toxic in vertebrates based on a mouse model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). Indeed, reducing VLCFA with bezafibrate ameliorates the phenotypes. Moreover, simultaneous use of bezafibrate and fingolimod synergizes to improve EAE, suggesting that lowering VLCFA and S1P is a treatment avenue for MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Ratones , Animales , Clorhidrato de Fingolimod/farmacología , Clorhidrato de Fingolimod/uso terapéutico , Inmunosupresores/farmacología , Enfermedades Neuroinflamatorias , Bezafibrato , Glicoles de Propileno/farmacología , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Neuroglía/metabolismo , Ácidos Grasos
8.
Front Neurosci ; 17: 1137893, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875645

RESUMEN

Neurodegenerative Diseases (NDDs) are a group of disorders that cause progressive deficits of neuronal function. Recent evidence argues that sphingolipid metabolism is affected in a surprisingly broad set of NDDs. These include some lysosomal storage diseases (LSDs), hereditary sensory and autonomous neuropathy (HSAN), hereditary spastic paraplegia (HSP), infantile neuroaxonal dystrophy (INAD), Friedreich's ataxia (FRDA), as well as some forms of amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD). Many of these diseases have been modeled in Drosophila melanogaster and are associated with elevated levels of ceramides. Similar changes have also been reported in vertebrate cells and mouse models. Here, we summarize studies using fly models and/or patient samples which demonstrate the nature of the defects in sphingolipid metabolism, the organelles that are implicated, the cell types that are initially affected, and potential therapeutics for these diseases.

9.
Hum Mol Genet ; 32(6): 984-997, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36255738

RESUMEN

SUPT16H encodes the large subunit of the FAcilitate Chromatin Transcription (FACT) complex, which functions as a nucleosome organizer during transcription. We identified two individuals from unrelated families carrying de novo missense variants in SUPT16H. The probands exhibit global developmental delay, intellectual disability, epilepsy, facial dysmorphism and brain structural abnormalities. We used Drosophila to characterize two variants: p.T171I and p.G808R. Loss of the fly ortholog, dre4, causes lethality at an early developmental stage. RNAi-mediated knockdown of dre4 in either glia or neurons causes severely reduced eclosion and longevity. Tissue-specific knockdown of dre4 in the eye or wing leads to the loss of these tissues, whereas overexpression of SUPT16H has no dominant effect. Moreover, expression of the reference SUPT16H significantly rescues the loss-of-function phenotypes in the nervous system as well as wing and eye. In contrast, expression of SUPT16H p.T171I or p.G808R rescues the phenotypes poorly, indicating that the variants are partial loss-of-function alleles. While previous studies argued that the developmental arrest caused by loss of dre4 is due to impaired ecdysone production in the prothoracic gland, our data show that dre4 is required for proper cell growth and survival in multiple tissues in a cell-autonomous manner. Altogether, our data indicate that the de novo loss-of-function variants in SUPT16H are indeed associated with developmental and neurological defects observed in the probands.


Asunto(s)
Encefalopatías , Epilepsia , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Animales , Supervivencia Celular , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/genética , Mutación Missense , Drosophila
10.
Cerebellum ; 22(2): 206-222, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35218524

RESUMEN

Cerebellar hypoplasia and dysplasia encompass a group of clinically and genetically heterogeneous disorders frequently associated with neurodevelopmental impairment. The Neuron Navigator 2 (NAV2) gene (MIM: 607,026) encodes a member of the Neuron Navigator protein family, widely expressed within the central nervous system (CNS), and particularly abundant in the developing cerebellum. Evidence across different species supports a pivotal function of NAV2 in cytoskeletal dynamics and neurite outgrowth. Specifically, deficiency of Nav2 in mice leads to cerebellar hypoplasia with abnormal foliation due to impaired axonal outgrowth. However, little is known about the involvement of the NAV2 gene in human disease phenotypes. In this study, we identified a female affected with neurodevelopmental impairment and a complex brain and cardiac malformations in which clinical exome sequencing led to the identification of NAV2 biallelic truncating variants. Through protein expression analysis and cell migration assay in patient-derived fibroblasts, we provide evidence linking NAV2 deficiency to cellular migration deficits. In model organisms, the overall CNS histopathology of the Nav2 hypomorphic mouse revealed developmental anomalies including cerebellar hypoplasia and dysplasia, corpus callosum hypo-dysgenesis, and agenesis of the olfactory bulbs. Lastly, we show that the NAV2 ortholog in Drosophila, sickie (sick) is widely expressed in the fly brain, and sick mutants are mostly lethal with surviving escapers showing neurobehavioral phenotypes. In summary, our results unveil a novel human neurodevelopmental disorder due to genetic loss of NAV2, highlighting a critical conserved role of the NAV2 gene in brain and cerebellar development across species.


Asunto(s)
Encéfalo , Malformaciones del Sistema Nervioso , Animales , Femenino , Humanos , Ratones , Cerebelo/anomalías , Neuronas
12.
Am J Hum Genet ; 109(10): 1932-1943, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36206744

RESUMEN

Proteins containing the FERM (four-point-one, ezrin, radixin, and moesin) domain link the plasma membrane with cytoskeletal structures at specific cellular locations and have been implicated in the localization of cell-membrane-associated proteins and/or phosphoinositides. FERM domain-containing protein 5 (FRMD5) localizes at cell adherens junctions and stabilizes cell-cell contacts. To date, variants in FRMD5 have not been associated with a Mendelian disease in OMIM. Here, we describe eight probands with rare heterozygous missense variants in FRMD5 who present with developmental delay, intellectual disability, ataxia, seizures, and abnormalities of eye movement. The variants are de novo in all for whom parental testing was available (six out of eight probands), and human genetic datasets suggest that FRMD5 is intolerant to loss of function (LoF). We found that the fly ortholog of FRMD5, CG5022 (dFrmd), is expressed in the larval and adult central nervous systems where it is present in neurons but not in glia. dFrmd LoF mutant flies are viable but are extremely sensitive to heat shock, which induces severe seizures. The mutants also exhibit defective responses to light. The human FRMD5 reference (Ref) cDNA rescues the fly dFrmd LoF phenotypes. In contrast, all the FRMD5 variants tested in this study (c.340T>C, c.1051A>G, c.1053C>G, c.1054T>C, c.1045A>C, and c.1637A>G) behave as partial LoF variants. In addition, our results indicate that two variants that were tested have dominant-negative effects. In summary, the evidence supports that the observed variants in FRMD5 cause neurological symptoms in humans.


Asunto(s)
Discapacidad Intelectual , Animales , Ataxia/genética , ADN Complementario , Discapacidades del Desarrollo/genética , Movimientos Oculares , Humanos , Discapacidad Intelectual/genética , Proteínas de la Membrana , Fosfatidilinositoles , Convulsiones , Proteínas Supresoras de Tumor/genética
13.
Am J Hum Genet ; 109(10): 1923-1931, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36067766

RESUMEN

MTSS2, also known as MTSS1L, binds to plasma membranes and modulates their bending. MTSS2 is highly expressed in the central nervous system (CNS) and appears to be involved in activity-dependent synaptic plasticity. Variants in MTSS2 have not yet been associated with a human phenotype in OMIM. Here we report five individuals with the same heterozygous de novo variant in MTSS2 (GenBank: NM_138383.2: c.2011C>T [p.Arg671Trp]) identified by exome sequencing. The individuals present with global developmental delay, mild intellectual disability, ophthalmological anomalies, microcephaly or relative microcephaly, and shared mild facial dysmorphisms. Immunoblots of fibroblasts from two affected individuals revealed that the variant does not significantly alter MTSS2 levels. We modeled the variant in Drosophila and showed that the fly ortholog missing-in-metastasis (mim) was widely expressed in most neurons and a subset of glia of the CNS. Loss of mim led to a reduction in lifespan, impaired locomotor behavior, and reduced synaptic transmission in adult flies. Expression of the human MTSS2 reference cDNA rescued the mim loss-of-function (LoF) phenotypes, whereas the c.2011C>T variant had decreased rescue ability compared to the reference, suggesting it is a partial LoF allele. However, elevated expression of the variant, but not the reference MTSS2 cDNA, led to similar defects as observed by mim LoF, suggesting that the variant is toxic and may act as a dominant-negative allele when expressed in flies. In summary, our findings support that mim is important for appropriate neural function, and that the MTSS2 c.2011C>T variant causes a syndromic form of intellectual disability.


Asunto(s)
Discapacidad Intelectual , Microcefalia , Malformaciones del Sistema Nervioso , Animales , ADN Complementario , Drosophila/genética , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Proteínas de la Membrana , Microcefalia/genética , Proteínas de Microfilamentos , Mutación Missense/genética , Malformaciones del Sistema Nervioso/genética , Fenotipo
14.
J Exp Med ; 219(9)2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35877595

RESUMEN

Astrocyte activation is associated with progressive inflammatory demyelination in multiple sclerosis (MS). The molecular mechanisms underlying astrocyte activation remain incompletely understood. Recent studies have suggested that classical neurotransmitter receptors are implicated in the modulation of brain innate immunity. We investigated the role of dopamine signaling in the process of astrocyte activation. Here, we show the upregulation of dopamine D2 receptor (DRD2) in reactive astrocytes in MS brain and noncanonical role of astrocytic DRD2 in MS pathogenesis. Mice deficient in astrocytic Drd2 exhibit a remarkable suppression of reactive astrocytes and amelioration of experimental autoimmune encephalomyelitis (EAE). Mechanistically, DRD2 regulates the expression of 6-pyruvoyl-tetrahydropterin synthase, which modulates NF-κB activity through protein kinase C-δ. Pharmacological blockade of astrocytic DRD2 with a DRD2 antagonist dehydrocorybulbine remarkably inhibits the inflammatory response in mice lacking neuronal Drd2. Together, our findings reveal previously an uncharted role for DRD2 in astrocyte activation during EAE-associated CNS inflammation. Its therapeutic inhibition may provide a potent lever to alleviate autoimmune diseases.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Astrocitos/metabolismo , Modelos Animales de Enfermedad , Inflamación/patología , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/patología , Receptores de Dopamina D2/metabolismo
15.
Trends Genet ; 38(9): 972-984, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35484057

RESUMEN

Advances in genome sequencing have enabled researchers and clinicians to probe vast numbers of human variants to distinguish pathogenic from benign variants. Model organisms have been crucial in variant assessment and in delineating the molecular mechanisms of some of the diseases caused by these variants. The fruit fly, Drosophila melanogaster, has played a valuable role in this endeavor, taking advantage of its genetic technologies and established biological knowledge. We highlight the utility of the fly in studying the function of genes associated with rare neurological diseases that have led to a better understanding of common disease mechanisms. We emphasize that shared themes emerge among disease mechanisms, including the importance of lipids, in two prominent neurodegenerative diseases: Alzheimer's disease (AD) and Parkinson's disease (PD).


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Enfermedad de Alzheimer/genética , Animales , Modelos Animales de Enfermedad , Drosophila , Drosophila melanogaster/genética , Humanos , Enfermedades Neurodegenerativas/genética , Enfermedad de Parkinson/genética
16.
Hum Mol Genet ; 31(16): 2751-2765, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35348658

RESUMEN

The Roundabout (Robo) receptors, located on growth cones of neurons, induce axon repulsion in response to the extracellular ligand Slit. The Robo family of proteins controls midline crossing of commissural neurons during development in flies. Mono- and bi-allelic variants in human ROBO1 (HGNC: 10249) have been associated with incomplete penetrance and variable expressivity for a breath of phenotypes, including neurodevelopmental defects such as strabismus, pituitary defects, intellectual impairment, as well as defects in heart and kidney. Here, we report two novel ROBO1 variants associated with very distinct phenotypes. A homozygous missense p.S1522L variant in three affected siblings with nystagmus; and a monoallelic de novo p.D422G variant in a proband who presented with early-onset epileptic encephalopathy. We modeled these variants in Drosophila and first generated a null allele by inserting a CRIMIC T2A-GAL4 in an intron. Flies that lack robo1 exhibit reduced viability but have very severe midline crossing defects in the central nervous system. The fly wild-type cDNA driven by T2A-Gal4 partially rescues both defects. Overexpression of the human reference ROBO1 with T2A-GAL4 is toxic and reduces viability, whereas the recessive p.S1522L variant is less toxic, suggesting that it is a partial loss-of-function allele. In contrast, the dominant variant in fly robo1 (p.D413G) affects protein localization, impairs axonal guidance activity and induces mild phototransduction defects, suggesting that it is a neomorphic allele. In summary, our studies expand the phenotypic spectrum associated with ROBO1 variant alleles.


Asunto(s)
Proteínas del Tejido Nervioso , Trastornos del Neurodesarrollo , Receptores Inmunológicos , Animales , Axones/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Humanos , Proteínas del Tejido Nervioso/metabolismo , Trastornos del Neurodesarrollo/genética , Receptores Inmunológicos/metabolismo , Proteínas Roundabout
17.
Am J Hum Genet ; 109(4): 571-586, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35240055

RESUMEN

TIAM Rac1-associated GEF 1 (TIAM1) regulates RAC1 signaling pathways that affect the control of neuronal morphogenesis and neurite outgrowth by modulating the actin cytoskeletal network. To date, TIAM1 has not been associated with a Mendelian disorder. Here, we describe five individuals with bi-allelic TIAM1 missense variants who have developmental delay, intellectual disability, speech delay, and seizures. Bioinformatic analyses demonstrate that these variants are rare and likely pathogenic. We found that the Drosophila ortholog of TIAM1, still life (sif), is expressed in larval and adult central nervous system (CNS) and is mainly expressed in a subset of neurons, but not in glia. Loss of sif reduces the survival rate, and the surviving adults exhibit climbing defects, are prone to severe seizures, and have a short lifespan. The TIAM1 reference (Ref) cDNA partially rescues the sif loss-of-function (LoF) phenotypes. We also assessed the function associated with three TIAM1 variants carried by two of the probands and compared them to the TIAM1 Ref cDNA function in vivo. TIAM1 p.Arg23Cys has reduced rescue ability when compared to TIAM1 Ref, suggesting that it is a partial LoF variant. In ectopic expression studies, both wild-type sif and TIAM1 Ref are toxic, whereas the three variants (p.Leu862Phe, p.Arg23Cys, and p.Gly328Val) show reduced toxicity, suggesting that they are partial LoF variants. In summary, we provide evidence that sif is important for appropriate neural function and that TIAM1 variants observed in the probands are disruptive, thus implicating loss of TIAM1 in neurological phenotypes in humans.


Asunto(s)
Discapacidad Intelectual , Alelos , Animales , Niño , ADN Complementario , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Drosophila/genética , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Fenotipo , Convulsiones/genética , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T/genética
18.
Am J Hum Genet ; 108(9): 1669-1691, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34314705

RESUMEN

Transportin-2 (TNPO2) mediates multiple pathways including non-classical nucleocytoplasmic shuttling of >60 cargoes, such as developmental and neuronal proteins. We identified 15 individuals carrying de novo coding variants in TNPO2 who presented with global developmental delay (GDD), dysmorphic features, ophthalmologic abnormalities, and neurological features. To assess the nature of these variants, functional studies were performed in Drosophila. We found that fly dTnpo (orthologous to TNPO2) is expressed in a subset of neurons. dTnpo is critical for neuronal maintenance and function as downregulating dTnpo in mature neurons using RNAi disrupts neuronal activity and survival. Altering the activity and expression of dTnpo using mutant alleles or RNAi causes developmental defects, including eye and wing deformities and lethality. These effects are dosage dependent as more severe phenotypes are associated with stronger dTnpo loss. Interestingly, similar phenotypes are observed with dTnpo upregulation and ectopic expression of TNPO2, showing that loss and gain of Transportin activity causes developmental defects. Further, proband-associated variants can cause more or less severe developmental abnormalities compared to wild-type TNPO2 when ectopically expressed. The impact of the variants tested seems to correlate with their position within the protein. Specifically, those that fall within the RAN binding domain cause more severe toxicity and those in the acidic loop are less toxic. Variants within the cargo binding domain show tissue-dependent effects. In summary, dTnpo is an essential gene in flies during development and in neurons. Further, proband-associated de novo variants within TNPO2 disrupt the function of the encoded protein. Hence, TNPO2 variants are causative for neurodevelopmental abnormalities.


Asunto(s)
Discapacidades del Desarrollo/genética , Proteínas de Drosophila/genética , Enfermedades Hereditarias del Ojo/genética , Discapacidad Intelectual/genética , Carioferinas/genética , Anomalías Musculoesqueléticas/genética , beta Carioferinas/genética , Proteína de Unión al GTP ran/genética , Alelos , Secuencia de Aminoácidos , Animales , Discapacidades del Desarrollo/metabolismo , Discapacidades del Desarrollo/patología , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Enfermedades Hereditarias del Ojo/metabolismo , Enfermedades Hereditarias del Ojo/patología , Femenino , Dosificación de Gen , Regulación del Desarrollo de la Expresión Génica , Genoma Humano , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/patología , Carioferinas/antagonistas & inhibidores , Carioferinas/metabolismo , Masculino , Anomalías Musculoesqueléticas/metabolismo , Anomalías Musculoesqueléticas/patología , Mutación , Neuronas/metabolismo , Neuronas/patología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Secuenciación Completa del Genoma , beta Carioferinas/metabolismo , Proteína de Unión al GTP ran/metabolismo
19.
Transl Neurodegener ; 8: 3, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30675347

RESUMEN

BACKGROUND: Parkinson's disease (PD) is characterized by a chronic loss of dopaminergic neurons and the presence of proteinaceous inclusions (Lewy bodies) within some remaining neurons in the substantia nigra. Recently, astroglial inclusion body has also been found in some neurodegenerative diseases including PD. However, the underlying molecular mechanisms of how astroglial protein aggregation forms remain largely unknown. Here, we investigated the contribution of αB-crystallin (CRYAB), a small heat shock protein, in α-synuclein inclusion formation in astrocytes. METHODS: Small interfering RNA (siRNA)-mediated CRYAB (siCRYAB) knockdown or CRYAB overexpression was performed to investigate the impact of CRYAB on the autophagy in human glioblastoma cell line U251 cells. Co-immunoprecipitation (co-IP) and immunoblotting were used to dissect the interaction among multiple proteins. The clearance of α-synuclein in vitro was evaluated by immunocytochemistry. CRYAB transgenic mice and transgenic mice overexpressing A30P mutant form of human α-synuclein were used to examine the influence of CRYAB to α-synuclein accumulation in vivo. RESULTS: We found that knockdown of CRYAB in U251 cells or primary cultured astrocytes resulted in a marked augmentation of autophagy activity. In contrast, exogenous CRYAB disrupted the assembly of the BAG3-HSPB8-HSC70 complex via binding with BAG3, thereby suppressing the autophagy activity. Furthermore, CRYAB-regulated autophagy has relevance to PD pathogenesis. Knockdown of CRYAB remarkably promoted cytoplasmic clearance of α-synuclein preformed fibrils (PFFs). Conversely, selective overexpression of CRYAB in astrocytes markedly suppressed autophagy leading to the accumulation of α-synuclein aggregates in the brain of transgenic mice expressing human α-synuclein A30P mutant. CONCLUSIONS: This study reveals a novel function for CRYAB as a natural inhibitor of astrocytic autophagy and shows that knockdown of CYRAB may provide a therapeutic target against proteinopathies such as synucleinopathies.

20.
Biochem Biophys Res Commun ; 508(1): 282-288, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30497777

RESUMEN

Neuroinflammation is considered a challenging clinical problem. Chronic inflammatory responses play important roles in the onset and progression of various neurodegenerative diseases, including multiple sclerosis (MS). Previous studies have shown that astrocytes express small heat shock protein αB-crystallin (CRYAB) which is capable of inhibiting inflammatory responses in astrocytes per se. However, the underlying mechanisms of CRYAB-induced modulation of neuroinflammation are still not fully understood. In the present study, we investigated the role of extracellular CRYAB in the interaction between microglia and astrocytes in the context of MS-associated neuroinflammation. We found that the expression of CRYAB was profoundly increased in EAE mice. CRYAB was preferentially expressed in astrocytes and could be secreted via exosomes. Levels of exosomal CRYAB secreted from astrocytes were markedly increased under stress conditions. Furthermore, incubation of immortalized astrocytes or microglia cell lines with CRYAB remarkably suppressed astrocytes and microglia-mediated inflammatory responses in both autocrine and paracrine manners. Our results reveal a novel function for extracellular CRYAB in the regulation of neuroinflammation. Targeting extracellular CRYAB-modulated neuroinflammation is a potential therapeutic intervention for MS.


Asunto(s)
Inflamación/metabolismo , Cadena B de alfa-Cristalina/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Inflamación/inducido químicamente , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA