RESUMEN
With the global population continuously rising, efficient bioconversion of inedible agricultural by-products is crucial for human food and energy sustainability. We here propose solid-state fermentation approaches to efficiently convert biopolymers into oligomers/monomers by accelerating the natural degradation process of the versatile Streptomyces sp. strain SCUT-3. Using fish skin as a representative by-product, 54.3 g amino acids and 14.7 g peptides (91 % < 2500 Da) were recovered from 89.0 g protein in 100 g tilapia skin sample by collagenase-overexpressed SCUT-3 for seven days at a 1:4 substrate:liquid ratio. Fish skin collagen hydrolysates exhibited excellent anti-oxidation, anti-hypertension, scratch-repairing, anti-aging, anti-ultraviolet radiation, and anti-inflammation effects on human skin fibroblasts In vitro and zebrafish larvae in vivo, indicating their potential applications in healthcare/skincare and anti-atopic dermatitis. As Laozi said, the divine law follows nature. This study underscores the efficacy of genetically engineered SCUT-3 according to its natural biomass utilization laws in large-scale biopolymer conversion.
Asunto(s)
Piel , Streptomyces , Pez Cebra , Animales , Streptomyces/metabolismo , Streptomyces/química , Piel/metabolismo , Humanos , Pez Cebra/metabolismo , Tilapia/metabolismo , Fermentación , Colágeno/metabolismo , Colágeno/química , Fibroblastos/metabolismoRESUMEN
Background: Morganella morganii is an emerging nosocomial opportunistic pathogen with increasing multidrug resistance. Antibiotic resistance, driven primarily by the horizontal transfer of resistance genes, has become a global health crisis. Integrons, mobile genetic elements, are now understood to facilitate the transfer of these genes, contributing to the rapid proliferation of resistant strains. Understanding the regulatory role of integrons in drug resistance gene expression is crucial for developing novel strategies to combat this pressing public health issue. Objective: To investigate the distribution of promoter types in the variable regions of class 1 integrons isolated from clinical isolates of M. morganii and their regulatory role in the expression of downstream drug resistance gene cassettes. Methods: Ninety seven clinical isolates of M. morganii were screened for the presence of class 1 integrons (intI1) using polymerase chain reaction (PCR). Gene cassettes within the variable regions of positive isolates were characterized, and the gene cassette promoter Pc variants and downstream auxiliary promoter P2 were identified. Enterobacterial repetitive intergenic consensus (ERIC)-PCR was employed for homology analysis. Recombinant plasmids containing different variable region promoters and gene cassettes were constructed to evaluate drug resistance genes and integrase (intI1) expression levels using reverse transcription-quantitative PCR (RT-qPCR) and antimicrobial susceptibility testing. Results: Of the clinical isolates, 28.9% (n = 28/97) were positive for class 1 integrons. 24.7% (n = 24/97) of these isolates carried gene cassettes encoding resistance to aminoglycosides and trimethoprim. Three Pc promoter types (PcH1, PcS, and PcW) were identified, while all P2 promoters were inactive with a 14-base pair spacing between the -35 and -10 regions. ERIC-PCR analysis classified the integron-positive strains into 6 genotypes, with high consistency in promoter types and gene cassettes within each genotype. RT-qPCR and antimicrobial susceptibility testing demonstrated that strong promoters significantly enhanced the expression of downstream drug resistance gene cassettes compared to weak promoters. Additionally, RT-qPCR revealed a negative correlation between intI1 expression and Pc promoter strength. Conclusion: Class 1 integrons are prevalent in M. morganii. The promoter types within these integrons are diverse, and promoter strength is closely linked to downstream gene cassette expression. Integron-positive strains exhibit high homology, suggesting horizontal gene transfer and dissemination in clinical settings.
RESUMEN
Grain boundary hardening and precipitation hardening are important mechanisms for enhancing the strength of metals. Here, we show that these two effects can be amplified simultaneously in nanocrystalline compositionally complex alloys (CCAs), leading to near-theoretical strength and large deformability. We develop a model nanograined (TiZrNbHf)98Ni2 alloy via thermodynamic design. The Ni solutes, which has a large negative mixing enthalpy and different electronegativity to Ti, Zr, Nb and Hf, not only produce Ni-enriched local chemical inhomogeneities in the nanograins, but also segregate to grain boundaries. The resultant alloy achieves a 2.5 GPa yield strength, together with work hardening capability and large homogeneous deformability to 65% compressive strain. The local chemical inhomogeneities impede dislocation propagation and encourage dislocation multiplication to promote strain hardening. Meanwhile, Ni segregates to grain boundaries and enhances cohesion, suppressing the grain growth and grain boundary cracking found while deforming the reference TiZrNbHf alloy. Our alloy design strategy thus opens an avenue, via solute decoration at grain boundaries combined with local chemical inhomogeneities inside the grains, towards ultrahigh strength and large plasticity in nanostructured alloys.
RESUMEN
A photoelectrochemical (PEC) sensor based on the poly-2,2,5,2-terthiophene (pTTh)/Cu2O heterojunction was constructed and applied for the detection of long non-coding RNA (lncRNA) TROJAN, a biomarker of triple-negative breast cancer. Cu2O and pTTh were electrodeposited in situ and sequentially onto an indium tin oxide substrate. The bandgap of the resultant type II heterojunction was measured spectroscopically and the morphology was found to effectively separate photogenerated holes from electrons. A photocurrent density as high as 250 µA cm-2 was attained, which is about three times higher than those of only pTTh or Cu2O. Owing to the close contact between pTTh and Cu2O, this PEC sensor is highly stable. Oligonucleotide probes for lncRNA can be cross-linked to carboxyl moieties of mercaptopropionic acid molecules adsorbed on pTTh/Cu2O. The desirable band structure and the high density of probe molecules collectively yielded a linear range of 0.1-10 000 pM. Our PEC sensor has been demonstrated to be amenable for detection of lncRNA markers with excellent analytical performance.
RESUMEN
Yellow leaf mutations have been widely used to study the chloroplast structures, the pigment synthesis, the photosynthesis mechanisms and the chlorophyll biosynthesis pathways across various species. For this study, a spontaneous mutant with the yellow leaf color named 96-140YBM was employed to explore the primary genetic elements that lead to the variations in the leaf color of hot peppers. To identify the pathways and genes associated with yellow leaf phenotypes, we applied sequencing-based Bulked Segregant Analysis (BSA-Seq) combined with BSR-Seq. We identified 4167 differentially expressed genes (DEGs) in the mutant pool compared with the wild-type pool. The results indicated that DEGs were involved in zeatin biosynthesis, plant hormone signal transduction, signal transduction mechanisms, post-translational modification and protein turnover. A total of 437 candidates were identified by the BSA-Seq, while the BSR-Seq pinpointed four candidate regions in chromosomes 8 and 9, containing 222 candidate genes. Additionally, the combination of BSA-Seq and BSR-Seq showed that there were 113 overlapping candidate genes between the two methods, among which 8 common candidates have been previously reported to be related to the development of chloroplasts, the photomorphogenesis and chlorophyll formation of plant chloroplasts and chlorophyll biogenesis. qRT-PCR analysis of the 8 common candidates showed higher expression levels in the mutant pool compared with the wild-type pool. Among the overlapping candidates, the DEG analysis showed that the CaKAS2 and CaMPH2 genes were down-regulated in the mutant pool compared to the wild type, suggesting that these genes may be key contributors to the yellow leaf phenotype of 96-140YBM. This research will deepen our understanding of the genetic basis of leaf color formation and provide valuable information for the breeding of hot peppers with diverse leaf colors.
Asunto(s)
Capsicum , Regulación de la Expresión Génica de las Plantas , Mutación , Hojas de la Planta , Capsicum/genética , Capsicum/crecimiento & desarrollo , Capsicum/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Pigmentación/genética , Fenotipo , Mapeo Cromosómico , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Clorofila/metabolismo , Clorofila/genética , Cloroplastos/genética , Cloroplastos/metabolismo , Fotosíntesis/genéticaRESUMEN
Objective: To observe the effect of Pseudomonas aeruginosa mannose-sensitive hemagglutinin (PA-MSHA) on the prognosis and the incidence of lymphatic leakage in patients undergoing radical cystectomy (RC). Method: A total of 129 patients who underwent RC in Lanzhou University Second Hospital from 2013 to 2022 were enrolled in this study. They were divided into 43 patients treated with PA-MSHA and 86 patients in the control group. Inverse probability of treatment weighting (IPTW) was applied to reduce potential selection bias. Kaplan-Meier method and Cox regression analysis were used to analyze the effect of PA-MSHA on the survival of patients and the incidence of postoperative lymphatic leakage. Results: The PA-MSHA group exhibited improved overall survival (OS) and cancer-specific survival (CSS) rates compared to the control group. The 3-year and 5-year overall survival (OS) rates for the PA-MSHA group were 69.1% and 53.2%, respectively, compared to 55.6% and 45.3% for the control group (Log-rank=3.218, P=0.072). The 3-year and 5-year cancer-specific survival (CSS) rates for the PA-MSHA group were 73.3% and 56.5%, respectively, compared to 58.0% and 47.3% for the control group (Log-rank=3.218, P=0.072). Additionally, the 3-year and 5-year progression-free survival (PFS) rates for the PA-MSHA group were 74.4% and 56.8%, respectively, compared to 57.1% and 52.2% for the control group (Log-rank=2.016, P=0.156). Multivariate Cox regression analysis indicates that lymph node metastasis and distant metastasis are poor prognostic factors for patients, while the use of PA-MSHA can improve patients' OS (HR: 0.547, 95%CI: 0.304-0.983, P=0.044), PFS (HR: 0.469, 95%CI: 0.229-0.959, P=0.038) and CSS (HR: 0.484, 95%CI: 0.257-0.908, P=0.024). The same trend was observed in the cohort After IPTW adjustment. Although there was no significant difference in the incidence of postoperative lymphatic leakage [18.6% (8/35) vs. 15.1% (84.9%), P=0.613] and pelvic drainage volume [470 (440) ml vs. 462.5 (430) ml, P=0.814] between PA-MSHA group and control group, PA-MSHA could shorten the median retention time of drainage tube (7.0 d vs 9.0 d) (P=0.021). Conclusion: PA-MSHA may improve radical cystectomy in patients with OS, PFS, and CSS, shorten the pelvic drainage tube retention time.
Asunto(s)
Cistectomía , Neoplasias de la Vejiga Urinaria , Humanos , Masculino , Cistectomía/métodos , Cistectomía/efectos adversos , Femenino , Estudios Retrospectivos , Persona de Mediana Edad , Neoplasias de la Vejiga Urinaria/cirugía , Neoplasias de la Vejiga Urinaria/mortalidad , Pronóstico , Anciano , Pseudomonas aeruginosaRESUMEN
A hyperbranched ion-imprinted polymer (IIP) material containing multiple selective adsorption sites was synthesized using halloysite nanotubes, methyl acrylate, and ethylenediamine in the presence of a template ion [i.e. Cd (II) heavy metal]. The successful preparation of the Cd-IIP composition was confirmed by FT-IR, XRD, TEM, TGA, and elemental analysis. The polymers exhibited good adsorption of Cd (II) with a maximum adsorption capacity of 64.37 mg·g-1. The imprinting factor (α) for Cd (II) was 2.62 and the selection factor (ß) was 1.78, indicating a specific adsorption of Cd (II) ion. The selection coefficients of Cd-IIP for Cd (II)/Pb (II), Cd (II)/Cu (II), Cd (II)/Ni (II), Cd (II)/Cr (III), and Cd (II)/Na (I) also indicated an excellent selectivity of the hyperbranched polymers for Cd (II) in the presence of competitive ions. The removal efficiency remained more than 75% after five cycles of desorption/adsorption. We envision that the HNTs based Cd-IIP has promising applications in the removal of Cd (II) from wastewater.
RESUMEN
Background: Klebsiella pneumoniae (KP) is a common nosocomial pathogen. Capsules are an important component of KP's virulence, among which the K1, K2, K5, K20, K54, and K57 serotypes are predominant and exhibit varying degrees of virulence. Methods: The capsule and virulence genes of 150 carbapenem-resistant Klebsiella pneumoniae (CRKP) and 213 carbapenem-sensitive Klebsiella pneumoniae (CSKP) isolates were examined by polymerase chain reaction (PCR). The isolates were tested for hypermucoviscosity by string tests. Phylogenetic relationships between KP isolates were analyzed using multilocus sequence typing (MLST) and a Galleria mellonella infection model confirmed the differences in virulence. Results: A total of 111 of 363 isolates of KP were detected, the highest detected serotypes were K1, K5, and K2, and CSKP was detected more frequently than CRKP. There was a greater prevalence of K1 and K2 serotypes in CSKP, while in CRKP, K5 serotypes were more prevalent. K1 isolates had the highest detection rates for hypermucoviscosity Klebsiella pneumoniae (hmKP) and hypervirulent Klebsiella pneumoniae (hvKP), and carried the most virulence genes. K54 isolates had the lowest detection rate of hmKP while K5 isolates had the lowest detection rate of hvKP and carried the fewest virulence genes. MLST results for serotypes K1, K20, and K57 showed significant homogeneity, while those for serotypes K2, K5, and K54 showed diversity. The Galleria mellonella infection model showed that the K1 serotype was the most virulent and the K54 serotype was the weakest. Conclusion: CSKP isolates were detected more frequently than CRKP isolates for capsular serotype detection. K1 isolates had the most virulence gene and strongest virulence, K5 isolates carried the fewest virulence genes, and K54 isolates had the weakest virulence. Furthermore, significant homogeneity was observed among K1, K20, and K57 isolates.
RESUMEN
Background: Fibrosis and inflammation due to ureteropelvic junction obstruction substantially contributes to poor renal function. Urine-derived stem-cell-derived exosomes (USC-Exos) have therapeutic effects through paracrine. Methods: In vitro, the effects of USC-Exos on the biological functions of HK-2 and human umbilical vein endothelial cells were tested. Cell inflammation and fibrosis were induced by transforming growth factor-ß1 and interleukin-1ß, and their anti-inflammatory and antifibrotic effects were observed after exogenous addition of USC-Exos. Through high-throughput sequencing of microRNA in USC-Exos, the pathways and key microRNAs were selected. Then, the antifibrotic and anti-inflammatory effects of exosomal miR-122-5p and target genes were verified. The role of the miR-122-5p/SOX2 axis in anti-inflammatory and antifibrotic effects was verified. In vivo, a rabbit model of partial unilateral ureteral obstruction (PUUO) was established. Magnetic resonance imaging recorded the volume of the renal pelvis after modeling, and renal tissue was pathologically analyzed. Results: We examined the role of USC-Exos and their miR-122-5p content in obstructive kidney injury. These Exos exhibit antifibrotic and anti-inflammatory activities. SOX2 is the hub gene in PUUO and negatively related to renal function. We confirmed the binding relationship between miR-122-5p and SOX2. The anti-inflammatory and antifibrotic effects of miR-122-5p were inhibited, indicating that miR-122-5p has anti-inflammatory and antifibrotic effects by inhibiting SOX2 expression. In vivo, the PUUO group showed typical obstructive kidney injury after modeling. After USC-Exo treatment, the shape of the renal pelvis shown a remarkable improvement, and inflammation and fibrosis decreased. Conclusions: We confirmed that miR-122-5p from USC-Exos targeting SOX2 is a new molecular target for postoperative recovery treatment of obstructive kidney injury.
RESUMEN
BACKGROUND: Wilms' tumor (WT) is the most common renal tumor in childhood. Pyroptosis, a type of inflammation-characterized and immune-related programmed cell death, has been extensively studied in multiple tumors. In the current study, we aim to construct a pyroptosis-related gene signature for predicting the prognosis of Wilms' tumor. METHODS: We acquired RNA-seq data from TARGET kidney tumor projects for constructing a gene signature, and snRNA-seq data from GEO database for validating signature-constructing genes. Pyroptosis-related genes (PRGs) were collected from three online databases. We constructed the gene signature by Lasso Cox regression and then established a nomogram. Underlying mechanisms by which gene signature is related to overall survival states of patients were explored by immune cell infiltration analysis, differential expression analysis, and functional enrichment analysis. RESULTS: A pyroptosis-related gene signature was constructed with 14 PRGs, which has a moderate to high predicting capacity with 1-, 3-, and 5-year area under the curve (AUC) values of 0.78, 0.80, and 0.83, respectively. A prognosis-predicting nomogram was established by gender, stage, and risk score. Tumor-infiltrating immune cells were quantified by seven algorithms, and the expression of CD8( +) T cells, B cells, Th2 cells, dendritic cells, and type 2 macrophages are positively or negatively correlated with risk score. Two single nuclear RNA-seq samples of different histology were harnessed for validation. The distribution of signature genes was identified in various cell types. CONCLUSIONS: We have established a pyroptosis-related 14-gene signature in WT. Moreover, the inherent roles of immune cells (CD8( +) T cells, B cells, Th2 cells, dendritic cells, and type 2 macrophages), functions of differentially expressed genes (tissue/organ development and intercellular communication), and status of signaling pathways (proteoglycans in cancer, signaling pathways regulating pluripotent of stem cells, and Wnt signaling pathway) have been elucidated, which might be employed as therapeutic targets in the future.
Asunto(s)
Neoplasias Renales , Piroptosis , Tumor de Wilms , Humanos , Piroptosis/genética , Tumor de Wilms/genética , Tumor de Wilms/inmunología , Neoplasias Renales/genética , Neoplasias Renales/inmunología , Neoplasias Renales/patología , Pronóstico , Nomogramas , Linfocitos Infiltrantes de Tumor/inmunología , Transcriptoma , Femenino , MasculinoRESUMEN
Biomedical alloys are paramount materials in biomedical applications, particularly in crafting biological artificial replacements. In traditional biomedical alloys, a significant challenge is simultaneously achieving an ultra-low Young's modulus, excellent biocompatibility, and acceptable ductility. A multi-component body-centered cubic (BCC) biomedical high-entropy alloy (Bio-HEA), which is composed of non-toxic elements, is noteworthy for its outstanding biocompatibility and compositional tuning capabilities. Nevertheless, the aforementioned challenges still remain. Here, a method to achieve a single phase with the lowest Young's modulus among the constituent phases by precisely tuning the stability of the BCC phase in the Bio-HEA, is proposed. The subtle tuning of the BCC phase stability also enables the induction of stress-induced martensite transformation with extremely low trigger stress. The transformation-induced plasticity and work hardening capacity are achieved via the stress-induced martensite transformation. Additionally, the hierarchical stress-induced martensite twin structure and crystalline-to-amorphous phase transformation provide robust toughening mechanisms in the Bio-HEA. The cytotoxicity test confirms that this Bio-HEA exhibits excellent biocompatibility without cytotoxicity. In conclusion, this study provides new insights into the development of biomedical alloys with a combination of ultra-low Young's modulus, excellent biocompatibility, and decent ductility.
RESUMEN
Extensive research has shown that nanolayered structures are capable of suppressing the shear banding in metallic glass in nanoindentation experiments. However, the specific mode and mechanism of the shear banding underneath the indenter remains unknown. Also, the quantification of shear banding-induced strain localization is still a challenge. Herein, the size-dependent shear banding behavior of a CuTiZrNb high-entropy alloy-based nanolayered glass with individual layer thicknesses (h) ranging from 5 to 80 nm was systematically investigated by nanoindentation tests. It was found that the hardness of the designed structure was almost size-independent. Yet, a clear transition in the deformation modes from the cutting-like shear bands to the kinking-like ones was discovered as h decreased to 10 nm. Moreover, multiple secondary shear bands also appeared, in addition to the primary ones, in the sample with h = 10 nm. The transition leads to an obvious strain delocalization, as clearly illustrated by the proposed theoretical model, which is based on the assumption of a pure shear stress state to quantify the shear banding-induced strain localization. The strain delocalization results from the higher density of amorphous/amorphous interfaces that exhibit the change in morphology with a refined layered glass structure.
RESUMEN
Background: In recent years, Klebsiella pneumoniae has attracted attention because of its increasing drug resistance. At the same time, the migration and pathogenicity caused by its virulence genes also bring many difficulties to the diagnosis and treatment of clinical infections. However, it is currently unclear whether there are differences in virulence and pathogenicity with changes in drug resistance. Objective: To understand the differences in molecular characteristics and expression of virulence genes in carbapenem-resistant Klebsiella pneumoniae (CRKP) and carbapenem-sensitive Klebsiella pneumoniae (CSKP). Methods: Using polymerase chain reaction (PCR), we examined capsule polysaccharide-related genes and virulence genes in 150 clinical isolates of CRKP and 213 isolates of CSKP from the local area in Ningbo, China. Multilocus sequence typing (MLST) was used to analyze the phylogenetic relationships of clinical Klebsiella pneumoniae isolates. Furthermore, real-time quantitative PCR (RT-qPCR) was used to analyze the expression differences of common virulence genes in CSKP and CRKP, and the virulence was further verified by the larval model of Galleria mellonella. Results: The study found that the detection rates of genes rmpA, iroB, peg-344, magA, aerobactin, alls, kfu, and entB were significantly higher in CSKP compared to CRKP. The capsule gene types K1 and K2 were more common in CSKP, while K5 was more common in CRKP. Hypervirulent Klebsiella pneumoniae (hvKP) was predominantly from CSKP. CRKP strains exhibited noticeable homogeneity, with ST11 being the predominant sequence type among the strains. CSKP strains showed greater diversity in ST types, but ST23 was still the predominant sequence type. Carbapenem-sensitive hypervirulent Klebsiella pneumoniae (CS-hvKP) had higher expression of rmpA and rmpA2 genes compared to carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP). In the wax moth virulence model, the survival rate of CS-hvKP was significantly lower than that of CR-hvKP. Conclusion: There is a significant difference in the distribution of virulence genes between CSKP and CRKP, with CSKP carrying a significantly greater number of virulence genes. Furthermore, compared to CSKP, CRKP strains exhibit noticeable homogeneity, with ST11 being the predominant sequence type among the strains. Additionally, in terms of virulence gene expression efficiency and virulence, CSKP is significantly higher than CRKP.
RESUMEN
Depression is a global public health issue that is widely studied due to the large number of people it affects and its serious consequences. Clinical studies have shown that regular tea consumption may reduce depression risk. (-)-Epigallocatechin gallate (EGCG), the main tea polyphenol, was observed to alleviate depression, but the underlying mechanism has not been elucidated. In this study, chronic unpredictable mild stress (CUMS) was used to induce depression-like behavior in mice, and behavioral tests, such as sucrose preference test and forced swim test, were performed. Then, ELISA, western blot and QT-PCR tests were used to assess the expression of the key components of the NLRP3 inflammasome and its downstream inflammatory effectors (e.g., IL-1ß, IL-18), autophagy markers (Beclin-1, LC3, P62) and apoptosis markers (Bax, Bcl-2) in mouse brain tissues. Changes in serum lipid levels were also assessed. EGCG alleviated CUMS-induced depression-like behavioral changes in mice, reduced activation of the NLRP3 inflammasome, inhibited the mTOR signaling pathway, restored autophagy levels, reduced apoptosis marker expression and attenuated abnormal changes in blood lipid levels. Our study demonstrates that EGCG exerts antidepressive effects through multiple mechanisms, providing new insight into the pathological mechanism of depression and laying the foundation for the development of new therapeutic measures.
RESUMEN
To ensure the safety and stability of the beach surface of the decommissioned uranium mill tailings pond, this paper uses red clay-bentonite and red clay (1:1) to carry out covering layer radon reduction simulation experiments to study the temperature, humidity, and radon reduction effect of the covering layer under natural conditions. The results show that the radon exhalation rate of red clay-bentonite cover layer is only 0.32 times that of red clay, which has a better radon reduction effect. The red clay-bentonite cover layer has better water retention and comparable heat preservation effect than red clay cover layer. The red clay-bentonite and red clay temperature curves follow the same evolution trend and were close together in the same outdoor conditions, and the humidity curves showed a difference of 1% to 3%. Soil temperature is the dominant factor affecting the variation of radon exhalation of red clay-bentonite and red clay covering layer with unsaturated water content.
RESUMEN
Objective.The aim of the present study was to evaluate the influence of one-sided pulmonary nodule and tumour on ventilation distribution pre- and post- partial lung resection.Approach.A total of 40 consecutive patients scheduled for laparoscopic lung parenchymal resection were included. Ventilation distribution was measured with electrical impedance tomography (EIT) in supine and surgery lateral positions 72 h before surgery (T1) and 48 h after extubation (T2). Left lung to global ventilation ratio (Fl), the global inhomogeneity index (GI), standard deviation of regional ventilation delay (RVDSD) and pendelluft amplitude (Apendelluft) were calculated to assess the spatial and temporal ventilation distribution.Main results.After surgery (T2), ventilation at the operated chest sides generally deteriorated compared to T1 as expected. For right-side resection, the differences were significant at both supine and left lateral positions (p< 0.001). The change of RVDSDwas in general more heterogeneous. For left-side resection, RVDSDwas worse at T2 compared to T1 at left lateral position (p= 0.002). The other EIT-based parameters showed no significant differences between the two time points. No significant differences were observed between supine and lateral positions for the same time points respectively.Significance.In the present study, we found that the surgery side influenced the ventilation distribution. When the resection was performed on the right lung, the postoperative ipsilateral ventilation was reduced and the right lung ratio fell significantly. When the resection was on the left lung, the ventilation delay was significantly increased.
Asunto(s)
Laparoscopía , Tomografía , Humanos , Tomografía/métodos , Respiración , Pulmón/cirugía , Tomografía Computarizada por Rayos X , Impedancia Eléctrica , Ventilación PulmonarRESUMEN
Feather waste, a rich source of proteins, has traditionally been processed through high-temperature puffing and acid-base hydrolysis, contributing to generation of greenhouse gases and H2S. To address this issue, we employed circular economy techniques to recover the nutritional value of feather waste. Streptomyces sp. SCUT-3, an efficient proteolytic and chitinolytic bacterium, was isolated for feather degradation previously. This study aimed to valorize feather waste for feed purposes by enhancing its feather transformation ability through promoter optimization. Seven promoters were identified through omics analysis and compared to a common Streptomyces promoter ermE*p. The strongest promoter, p24880, effectively enhanced the expression of three candidate keratinases (Sep39, Sep40, and Sep53). The expression efficiency of double-, triple-p24880 and sandwich p24880-sep39-p24880 promoters were further verified. The co-overexpression strain SCUT-3-p24880-sep39-p24880-sep40 exhibited a 16.21-fold increase in keratinase activity compared to the wild-type. Using this strain, a solid-state fermentation process was established that increased the feather/water ratio (w/w) to 1:1.5, shortened the fermentation time to 2.5 days, and increased soluble peptide and free amino acid yields to 0.41 g/g and 0.14 g/g, respectively. The resulting has high protein content (90.49 %), with high in vitro digestibility (94.20 %). This method has the potential to revolutionize the feather waste processing industry.
Asunto(s)
Plumas , Streptomyces , Animales , Plumas/química , Streptomyces/genética , Streptomyces/metabolismo , Fermentación , Pollos/metabolismo , Péptido Hidrolasas/genética , Péptido Hidrolasas/química , Queratinas/metabolismo , Concentración de Iones de HidrógenoRESUMEN
The therapeutic role of tendon stem cells (TSCs) in tendon-related injuries has been well documented. Small extracellular vesicles (sEVs) are being increasingly used as new biotherapeutic agents for various diseases. Therefore, the potential function of TSC-sEVs in tendon injury repair warrants further investigation. In this study, we explored the effects of TSC-sEVs on TSC proliferation, migration, and differentiation in vitro in an autocrine manner. We further used a novel exosomal topical treatment with TSC-sEVs loaded with gelatin methacryloyl (GelMA) hydrogel in vivo; we mixed sufficient amounts of TSC-sEVs with GelMA hydrogel to cover the damaged molded Achilles tendon tissue and then exposed them to UV irradiation for coagulation. GelMA loading ensured that TSC-sEVs were slowly released at the injury site over a long period, thereby achieving their full local therapeutic effects. Treatment with TSC-sEVs loaded with GelMA significantly improved the histological score of the regenerated tendon by increasing the tendon expression while inhibiting the formation of excessive ossification and improving the mechanical properties of the tissue. Moreover, miRNA sequencing in TSC-sEVs, TSCs, and TSCs receiving sEVs revealed that TSC-sEVs altered the miRNA expression profile of TSCs, with increased expression of miR-145-3p. In conclusion, our study demonstrates that TSC-sEVs can play a key role in treating tendon injuries and that loading them with GelMA can enhance their effect in vivo. Moreover, miR-145-3p has a major functional role in the effect of TSC-sEVs. This study offers new therapeutic ideas for the local treatment of Achilles tendon injuries using sEVs. STATEMENT OF SIGNIFICANCE: In this study, we demonstrated that TSC-sEVs play a key role in treating tendon injuries and that loading them with GelMA hydrogel can act as a fixation and slow release in vivo. Moreover, it identifies the major functional role of miR-145-3p in the effect of TSCs that were identified and validated by miRNA sequencing. Our study provides a basis for further research on GelMA slow-release assays that have potential clinical applications. It offers new therapeutic ideas for the local treatment of Achilles tendon injuries using TSC-sEVs.
Asunto(s)
Tendón Calcáneo , Vesículas Extracelulares , MicroARNs , Traumatismos de los Tendones , Humanos , Traumatismos de los Tendones/patología , MicroARNs/farmacología , Células Madre , Hidrogeles/farmacología , Hidrogeles/metabolismoRESUMEN
Duck Tembusu virus (DTMUV), duck circovirus (DuCV), and new duck reovirus (NDRV) have seriously hindered the development of the poultry industry in China. To detect the three pathogens simultaneously, a multiplex digital PCR (dPCR) was developed and compared with multiplex qPCR in this study. The multiplex dPCR was able to specifically detect DTMUV, DuCV, and NDRV but not amplify Muscovy duck reovirus (MDRV), Muscovy duck parvovirus (MDPV), goose parvovirus (GPV), H4 avian influenza virus (H4 AIV), H6 avian influenza virus (H6 AIV), and Newcastle disease virus (NDV). The standard curves showed excellent linearity in multiplex dPCR and qPCR and were positively correlated. The sensitivity results showed that the lowest detection limit of multiplex dPCR was 1.3 copies/µL, which was 10 times higher than that of multiplex qPCR. The reproducibility results showed that the intra- and interassay coefficients of variation were 0.06-1.94%. A total of 173 clinical samples were tested to assess the usefulness of the method; the positive detection rates for DTMUV, DuCV, and NDRV were 18.5, 29.5, and 14.5%, respectively, which were approximately 4% higher than those of multiplex qPCR, and the kappa values for the clinical detection results of multiplex dPCR and qPCR were 0.85, 0.89, and 0.86, indicating that the two methods were in excellent agreement.