Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Science ; 383(6687): eadk8838, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38452087

RESUMEN

Crop yield potential is constrained by the inherent trade-offs among traits such as between grain size and number. Brassinosteroids (BRs) promote grain size, yet their role in regulating grain number is unclear. By deciphering the clustered-spikelet rice germplasm, we show that activation of the BR catabolic gene BRASSINOSTEROID-DEFICIENT DWARF3 (BRD3) markedly increases grain number. We establish a molecular pathway in which the BR signaling inhibitor GSK3/SHAGGY-LIKE KINASE2 phosphorylates and stabilizes OsMADS1 transcriptional factor, which targets TERMINAL FLOWER1-like gene RICE CENTRORADIALIS2. The tissue-specific activation of BRD3 in the secondary branch meristems enhances panicle branching, minimizing negative effects on grain size, and improves grain yield. Our study showcases the power of tissue-specific hormonal manipulation in dismantling the trade-offs among various traits and thus unleashing crop yield potential in rice.


Asunto(s)
Brasinoesteroides , Grano Comestible , Oryza , Proteínas de Plantas , Brasinoesteroides/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plant Cell ; 36(6): 2272-2288, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38421027

RESUMEN

A number of cis-regulatory elements (CREs) conserved during evolution have been found to be responsible for phenotypic novelty and variation. Cucurbit crops such as cucumber (Cucumis sativus), watermelon (Citrullus lanatus), melon (Cucumis melo), and squash (Cucurbita maxima) develop fruits from an inferior ovary and share some similar biological processes during fruit development. Whether conserved regulatory sequences play critical roles in fruit development of cucurbit crops remains to be explored. In six well-studied cucurbit species, we identified 392,438 conserved noncoding sequences (CNSs), including 82,756 that are specific to cucurbits, by comparative genomics. Genome-wide profiling of accessible chromatin regions (ACRs) and gene expression patterns mapped 20,865 to 43,204 ACRs and their potential target genes for two fruit tissues at two key developmental stages in six cucurbits. Integrated analysis of CNSs and ACRs revealed 4,431 syntenic orthologous CNSs, including 1,687 cucurbit-specific CNSs that overlap with ACRs that are present in all six cucurbit crops and that may regulate the expression of 757 adjacent orthologous genes. CRISPR mutations targeting two CNSs present in the 1,687 cucurbit-specific sequences resulted in substantially altered fruit shape and gene expression patterns of adjacent NAC1 (NAM, ATAF1/2, and CUC2) and EXT-like (EXTENSIN-like) genes, validating the regulatory roles of these CNSs in fruit development. These results not only provide a number of target CREs for cucurbit crop improvement, but also provide insight into the roles of CREs in plant biology and during evolution.


Asunto(s)
Secuencia Conservada , Frutas , Regulación de la Expresión Génica de las Plantas , Frutas/genética , Frutas/crecimiento & desarrollo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Cucurbita/genética , Cucurbita/crecimiento & desarrollo , Citrullus/genética , Citrullus/crecimiento & desarrollo , Citrullus/metabolismo , Cucumis sativus/genética , Cucumis sativus/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta/genética
3.
G3 (Bethesda) ; 14(4)2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38190722

RESUMEN

Duckweeds are among the fastest reproducing plants, able to clonally divide at exponential rates. However, the genetic and epigenetic impact of clonality on plant genomes is poorly understood. 5-methylcytosine (5mC) is a modified base often described as necessary for the proper regulation of certain genes and transposons and for the maintenance of genome integrity in plants. However, the extent of this dogma is limited by the current phylogenetic sampling of land plant species diversity. Here we analyzed DNA methylomes, small RNAs, mRNA-seq, and H3K9me2 histone modification for Spirodela polyrhiza. S. polyrhiza has lost highly conserved genes involved in de novo methylation of DNA at sites often associated with repetitive DNA, and within genes, however, symmetrical DNA methylation and heterochromatin are maintained during cell division at certain transposons and repeats. Consequently, small RNAs that normally guide methylation to silence repetitive DNA like retrotransposons are diminished. Despite the loss of a highly conserved methylation pathway, and the reduction of small RNAs that normally target repetitive DNA, transposons have not proliferated in the genome, perhaps due in part to the rapid, clonal growth lifestyle of duckweeds.


Asunto(s)
Metilación de ADN , Genoma de Planta , Filogenia , Heterocromatina , ADN
4.
Plant Physiol ; 194(2): 774-786, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-37850886

RESUMEN

Drought has become one of the most severe abiotic stresses experienced in agricultural production across the world. Plants respond to water deficit via stomatal movements in the leaves, which are mainly regulated by abscisic acid (ABA). A previous study from our lab showed that constitutive expression of maize (Zea mays L.) GOLDEN2-LIKE (GLK) transcription factors in rice (Oryza sativa L.) can improve stomatal conductance and plant photosynthetic capacity under field conditions. In the present study, we uncovered a function of ZmGLK regulation of stomatal movement in rice during drought stress. We found that elevated drought tolerance in rice plants overexpressing ZmGLK1 or GOLDEN2 (ZmG2) was conferred by rapid ABA-mediated stomatal closure. Comparative analysis of RNA-sequencing (RNA-seq) data from the rice leaves and DNA affinity purification sequencing (DAP-seq) results obtained in vitro revealed that ZmGLKs played roles in regulating ABA-related and stress-responsive pathways. Four upregulated genes closely functioning in abiotic stress tolerance with strong binding peaks in the DAP-seq data were identified as putative target genes of ZmGLK1 and ZmG2 in rice. These results demonstrated that maize GLKs play an important role in regulating stomatal movements to coordinate photosynthesis and stress tolerance. This trait is a valuable target for breeding drought-tolerant crop plants without compromising photosynthetic capacity.


Asunto(s)
Oryza , Oryza/metabolismo , Zea mays/genética , Zea mays/metabolismo , Resistencia a la Sequía , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Fitomejoramiento , Ácido Abscísico/metabolismo , Sequías , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
6.
Mol Plant ; 16(12): 1893-1910, 2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-37897037

RESUMEN

Despite recent progress in crop genomics studies, the genomic changes brought about by modern breeding selection are still poorly understood, thus hampering genomics-assisted breeding, especially in polyploid crops with compound genomes such as common wheat (Triticum aestivum). In this work, we constructed genome resources for the modern elite common wheat variety Aikang 58 (AK58). Comparative genomics between AK58 and the landrace cultivar Chinese Spring (CS) shed light on genomic changes that occurred through recent varietal improvement. We also explored subgenome diploidization and divergence in common wheat and developed a homoeologous locus-based genome-wide association study (HGWAS) approach, which was more effective than single homoeolog-based GWAS in unraveling agronomic trait-associated loci. A total of 123 major HGWAS loci were detected using a genetic population derived from AK58 and CS. Elite homoeologous haplotypes (HHs), formed by combinations of subgenomic homoeologs of the associated loci, were found in both parents and progeny, and many could substantially improve wheat yield and related traits. We built a website where users can download genome assembly sequence and annotation data for AK58, perform blast analysis, and run JBrowse. Our work enriches genome resources for wheat, provides new insights into genomic changes during modern wheat improvement, and suggests that efficient mining of elite HHs can make a substantial contribution to genomics-assisted breeding in common wheat and other polyploid crops.


Asunto(s)
Pan , Triticum , Triticum/genética , Haplotipos/genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Poliploidía , Genoma de Planta/genética
7.
Mol Plant ; 16(11): 1811-1831, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37794682

RESUMEN

Phosphorus is an essential macronutrient for plant development and metabolism, and plants have evolved ingenious mechanisms to overcome phosphate (Pi) starvation. However, the molecular mechanisms underlying the regulation of shoot and root architecture by low phosphorus conditions and the coordinated utilization of Pi and nitrogen remain largely unclear. Here, we show that Nodulation Signaling Pathway 1 (NSP1) and NSP2 regulate rice tiller number by promoting the biosynthesis of strigolactones (SLs), a class of phytohormones with fundamental effects on plant architecture and environmental responses. We found that NSP1 and NSP2 are induced by Oryza sativa PHOSPHATE STARVATION RESPONSE2 (OsPHR2) in response to low-Pi stress and form a complex to directly bind the promoters of SL biosynthesis genes, thus markedly increasing SL biosynthesis in rice. Interestingly, the NSP1/2-SL signaling module represses the expression of CROWN ROOTLESS 1 (CRL1), a newly identified early SL-responsive gene in roots, to restrain lateral root density under Pi deficiency. We also demonstrated that GR244DO treatment under normal conditions inhibits the expression of OsNRTs and OsAMTs to suppress nitrogen absorption but enhances the expression of OsPTs to promote Pi absorption, thus facilitating the balance between nitrogen and phosphorus uptake in rice. Importantly, we found that NSP1p:NSP1 and NSP2p:NSP2 transgenic plants show improved agronomic traits and grain yield under low- and medium-phosphorus conditions. Taken together, these results revealed a novel regulatory mechanism of SL biosynthesis and signaling in response to Pi starvation, providing genetic resources for improving plant architecture and nutrient-use efficiency in low-Pi environments.


Asunto(s)
Oryza , Oryza/metabolismo , Lactonas/metabolismo , Fósforo/metabolismo , Fosfatos/metabolismo , Transducción de Señal , Nitrógeno/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
aBIOTECH ; 4(1): 8-19, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37220536

RESUMEN

Development of wheat (Triticum aestivum L.) grain mainly depends on the processes of starch synthesis and storage protein accumulation, which are critical for grain yield and quality. However, the regulatory network underlying the transcriptional and physiological changes of grain development is still not clear. Here, we combined ATAC-seq and RNA-seq to discover the chromatin accessibility and gene expression dynamics during these processes. We found that the chromatin accessibility changes are tightly associated with differential transcriptomic expressions, and the proportion of distal ACRs was increased gradually during grain development. Specific transcription factor (TF) binding sites were enriched at different stages and were diversified among the 3 subgenomes. We further predicted the potential interactions between key TFs and genes related with starch and storage protein biosynthesis and found different copies of some key TFs played diversified roles. Overall, our findings have provided numerous resources and illustrated the regulatory network during wheat grain development, which would shed light on the improvement of wheat yields and qualities. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-023-00095-8.

9.
Plant Commun ; 4(4): 100567, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-36855304

RESUMEN

Wheat (Triticum aestivum, BBAADD) is an allohexaploid species that originated from two polyploidization events. The progenitors of the A and D subgenomes have been identified as Triticum urartu and Aegilops tauschii, respectively. Current research suggests that Aegilops speltoides is the closest but not the direct ancestor of the B subgenome. However, whether Ae. speltoides has contributed genomically to the wheat B subgenome and which chromosome regions are conserved between Ae. speltoides and the B subgenome remain unclear. Here, we assembled a high-quality reference genome for Ae. speltoides, resequenced 53 accessions from seven species (Aegilops bicornis, Aegilops longissima, Aegilops searsii, Aegilops sharonensis, Ae. speltoides, Aegilops mutica [syn. Amblyopyrum muticum], and Triticum dicoccoides) and revealed their genomic contributions to the wheat B subgenome. Our results showed that centromeric regions were particularly conserved between Aegilops and Triticum and revealed 0.17 Gb of conserved blocks between Ae. speltoides and the B subgenome. We classified five groups of conserved and non-conserved genes between Aegilops and Triticum, revealing their biological characteristics, differentiation in gene expression patterns, and collinear relationships between Ae. speltoides and the wheat B subgenome. We also identified gene families that expanded in Ae. speltoides during its evolution and 789 genes specific to Ae. speltoides. These genes can serve as genetic resources for improvement of adaptability to biotic and abiotic stress. The newly constructed reference genome and large-scale resequencing data for Sitopsis species will provide a valuable genomic resource for wheat genetic improvement and genomic studies.


Asunto(s)
Pan , Triticum , Triticum/genética , Genoma de Planta/genética , Mapeo Cromosómico , Poaceae/genética
10.
Plant Commun ; 4(4): 100556, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-36739481

RESUMEN

The centromere is the region of a chromosome that directs its separation and plays an important role in cell division and reproduction of organisms. Elucidating the dynamics of centromeres is an alternative strategy for exploring the evolution of wheat. Here, we comprehensively analyzed centromeres from the de novo-assembled common wheat cultivar Aikang58 (AK58), Chinese Spring (CS), and all sequenced diploid and tetraploid ancestors by chromatin immunoprecipitation sequencing, whole-genome bisulfite sequencing, RNA sequencing, assay for transposase-accessible chromatin using sequencing, and comparative genomics. We found that centromere-associated sequences were concentrated during tetraploidization and hexaploidization. Centromeric repeats of wheat (CRWs) have undergone expansion during wheat evolution, with strong interweaving between the A and B subgenomes post tetraploidization. We found that CENH3 prefers to bind with younger CRWs, as directly supported by immunocolocalization on two chromosomes (1A and 2A) of wild emmer wheat with dicentromeric regions, only one of which bound with CENH3. In a comparison of AK58 with CS, obvious centromere repositioning was detected on chromosomes 1B, 3D, and 4D. The active centromeres showed a unique combination of lower CG but higher CHH and CHG methylation levels. We also found that centromeric chromatin was more open than pericentromeric chromatin, with higher levels of gene expression but lower gene density. Frequent introgression between tetraploid and hexaploid wheat also had a strong influence on centromere position on the same chromosome. This study also showed that active wheat centromeres were genetically and epigenetically determined.


Asunto(s)
Tetraploidía , Triticum , Triticum/genética , Centrómero/genética , Cromatina , Secuencia de Bases
11.
Sci China Life Sci ; 66(4): 819-834, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36417050

RESUMEN

Expression divergence caused by genetic variation and crosstalks among subgenomes of the allohexaploid bread wheat (Triticum aestivum. L., BBAADD) is hypothesized to increase its adaptability and/or plasticity. However, the molecular basis of expression divergence remains unclear. Squamosa promoter-binding protein-like (SPL) transcription factors are critical for a wide array of biological processes. In this study, we constructed expression regulatory networks by combining DAP-seq for 40 SPLs, ATAC-seq, and RNA-seq. Our findings indicate that a group of low-affinity SPL binding regions (SBRs) were targeted by diverse SPLs and caused different sequence preferences around the core GTAC motif. The SBRs including the low-affinity ones are evolutionarily conserved, enriched GWAS signals related to important agricultural traits. However, those SBRs are highly diversified among the cis-regulatory regions (CREs) of syntenic genes, with less than 8% SBRs coexisting in triad genes, suggesting that CRE variations are critical for subgenome differentiations. Knocking out of TaSPL7A/B/D and TaSPL15A/B/D subfamily further proved that both high- and low-affinity SBRs played critical roles in the differential expression of genes regulating tiller number and spike sizes. Our results have provided baseline data for downstream networks of SPLs and wheat improvements and revealed that CRE variations are critical sources for subgenome divergence in the allohexaploid wheat.


Asunto(s)
Genoma de Planta , Triticum , Triticum/genética , Fenotipo , Sitios de Unión , Regulación de la Expresión Génica de las Plantas
12.
J Integr Plant Biol ; 65(1): 45-63, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36165397

RESUMEN

Integration of light signaling and diverse abiotic stress responses contribute to plant survival in a changing environment. Some reports have indicated that light signals contribute a plant's ability to deal with heat, cold, and stress. However, the molecular link between light signaling and the salt-response pathways remains unclear. We demonstrate here that increasing light intensity elevates the salt stress tolerance of plants. Depletion of HY5, a key component of light signaling, causes Arabidopsis thaliana to become salinity sensitive. Interestingly, the small heat shock protein (sHsp) family genes are upregulated in hy5-215 mutant plants, and HsfA2 is commonly involved in the regulation of these sHsps. We found that HY5 directly binds to the G-box motifs in the HsfA2 promoter, with the cooperation of HISTONE DEACETYLASE 9 (HDA9), to repress its expression. Furthermore, the accumulation of HDA9 and the interaction between HY5 and HDA9 are significantly enhanced by salt stress. On the contrary, high temperature triggers HY5 and HDA9 degradation, which leads to dissociation of HY5-HDA9 from the HsfA2 promoter, thereby reducing salt tolerance. Under salt and heat stress conditions, fine tuning of protein accumulation and an interaction between HY5 and HDA9 regulate HsfA2 expression. This implies that HY5, HDA9, and HsfA2 play important roles in the integration of light signaling with salt stress and heat shock response.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Estrés Salino/genética , Histona Desacetilasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo
13.
Sci China Life Sci ; 65(9): 1718-1775, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36018491

RESUMEN

Bread wheat (Triticum aestivum L.) is a major crop that feeds 40% of the world's population. Over the past several decades, advances in genomics have led to tremendous achievements in understanding the origin and domestication of wheat, and the genetic basis of agronomically important traits, which promote the breeding of elite varieties. In this review, we focus on progress that has been made in genomic research and genetic improvement of traits such as grain yield, end-use traits, flowering regulation, nutrient use efficiency, and biotic and abiotic stress responses, and various breeding strategies that contributed mainly by Chinese scientists. Functional genomic research in wheat is entering a new era with the availability of multiple reference wheat genome assemblies and the development of cutting-edge technologies such as precise genome editing tools, high-throughput phenotyping platforms, sequencing-based cloning strategies, high-efficiency genetic transformation systems, and speed-breeding facilities. These insights will further extend our understanding of the molecular mechanisms and regulatory networks underlying agronomic traits and facilitate the breeding process, ultimately contributing to more sustainable agriculture in China and throughout the world.


Asunto(s)
Fitomejoramiento , Triticum , Genoma de Planta/genética , Genómica , Fenotipo , Sitios de Carácter Cuantitativo/genética , Triticum/genética
14.
Front Plant Sci ; 13: 946213, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35923880

RESUMEN

The biological functions of the circadian clock on growth and development have been well elucidated in model plants, while its regulatory roles in crop species, especially the roles on yield-related traits, are poorly understood. In this study, we characterized the core clock gene CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) homoeologs in wheat and studied their biological functions in seedling growth and spike development. TaCCA1 homoeologs exhibit typical diurnal expression patterns, which are positively regulated by rhythmic histone modifications including histone H3 lysine 4 trimethylation (H3K4me3), histone H3 lysine 9 acetylation (H3K9Ac), and histone H3 lysine 36 trimethylation (H3K36me3). TaCCA1s are preferentially located in the nucleus and tend to form both homo- and heterodimers. TaCCA1 overexpression (TaCCA1-OE) transgenic wheat plants show disrupted circadian rhythmicity coupling with reduced chlorophyll and starch content, as well as biomass at seedling stage, also decreased spike length, grain number per spike, and grain size at the ripening stage. Further studies using DNA affinity purification followed by deep sequencing [DNA affinity purification and sequencing (DAP-seq)] indicated that TaCCA1 preferentially binds to sequences similarly to "evening elements" (EE) motif in the wheat genome, particularly genes associated with photosynthesis, carbon utilization, and auxin homeostasis, and decreased transcriptional levels of these target genes are observed in TaCCA1-OE transgenic wheat plants. Collectively, our study provides novel insights into a circadian-mediated mechanism of gene regulation to coordinate photosynthetic and metabolic activities in wheat, which is important for optimal plant growth and crop yield formation.

15.
Science ; 377(6604): eabi8455, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35862527

RESUMEN

Complex biological processes such as plant growth and development are often under the control of transcription factors that regulate the expression of large sets of genes and activate subordinate transcription factors in a cascade-like fashion. Here, by screening candidate photosynthesis-related transcription factors in rice, we identified a DREB (Dehydration Responsive Element Binding) family member, OsDREB1C, in which expression is induced by both light and low nitrogen status. We show that OsDREB1C drives functionally diverse transcriptional programs determining photosynthetic capacity, nitrogen utilization, and flowering time. Field trials with OsDREB1C-overexpressing rice revealed yield increases of 41.3 to 68.3% and, in addition, shortened growth duration, improved nitrogen use efficiency, and promoted efficient resource allocation, thus providing a strategy toward achieving much-needed increases in agricultural productivity.


Asunto(s)
Producción de Cultivos , Grano Comestible , Oryza , Fotosíntesis , Proteínas de Plantas , Factores de Transcripción , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Nitrógeno/metabolismo , Oryza/genética , Oryza/crecimiento & desarrollo , Fotosíntesis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
16.
BMC Genomics ; 22(1): 459, 2021 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-34147068

RESUMEN

BACKGROUND: Regulation of chromatin accessibility and transcription are tightly coordinated processes. Studies in yeast and higher eukaryotes have described accessible chromatin regions, but little work has been done in filamentous fungi. RESULTS: Here we present a genome-scale characterization of accessible chromatin regions in Neurospora crassa, which revealed characteristic molecular features of accessible and inaccessible chromatin. We present experimental evidence of inaccessibility within heterochromatin regions in Neurospora, and we examine features of both accessible and inaccessible chromatin, including the presence of histone modifications, types of transcription, transcription factor binding, and relative nucleosome turnover rates. Chromatin accessibility is not strictly correlated with expression level. Accessible chromatin regions in the model filamentous fungus Neurospora are characterized the presence of H3K27 acetylation and commonly associated with pervasive non-coding transcription. Conversely, methylation of H3 lysine-36 catalyzed by ASH1 is correlated with inaccessible chromatin within promoter regions. CONCLUSIONS: In N. crassa, H3K27 acetylation is the most predictive histone modification for open chromatin. Conversely, our data show that H3K36 methylation is a key marker of inaccessible chromatin in gene-rich regions of the genome. Our data are consistent with an expanded role for H3K36 methylation in intergenic regions of filamentous fungi compared to the model yeasts, S. cerevisiae and S. pombe, which lack homologs of the ASH1 methyltransferase.


Asunto(s)
Neurospora crassa , Proteínas de Saccharomyces cerevisiae , Cromatina/genética , Histonas/genética , Neurospora crassa/genética , Nucleosomas/genética , Proteínas Represoras , Saccharomyces cerevisiae
17.
Plant Cell ; 33(3): 475-491, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33955490

RESUMEN

Photoperiod plays a key role in controlling the phase transition from vegetative to reproductive growth in flowering plants. Leaves are the major organs perceiving day-length signals, but how specific leaf cell types respond to photoperiod remains unknown. We integrated photoperiod-responsive chromatin accessibility and transcriptome data in leaf epidermis and vascular companion cells of Arabidopsis thaliana by combining isolation of nuclei tagged in specific cell/tissue types with assay for transposase-accessible chromatin using sequencing and RNA-sequencing. Despite a large overlap, vasculature and epidermis cells responded differently. Long-day predominantly induced accessible chromatin regions (ACRs); in the vasculature, more ACRs were induced and these were located at more distal gene regions, compared with the epidermis. Vascular ACRs induced by long days were highly enriched in binding sites for flowering-related transcription factors. Among the highly ranked genes (based on chromatin and expression signatures in the vasculature), we identified TREHALOSE-PHOSPHATASE/SYNTHASE 9 (TPS9) as a flowering activator, as shown by the late flowering phenotypes of T-DNA insertion mutants and transgenic lines with phloem-specific knockdown of TPS9. Our cell-type-specific analysis sheds light on how the long-day photoperiod stimulus impacts chromatin accessibility in a tissue-specific manner to regulate plant development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , ADN Bacteriano/metabolismo , Flores/metabolismo , Floema/metabolismo , Fotoperiodo , Plantas Modificadas Genéticamente/metabolismo , Regiones Promotoras Genéticas/genética , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , ADN Bacteriano/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Factores de Transcripción/genética
18.
Genetics ; 217(1): 1-13, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33683350

RESUMEN

Transposable elements (TEs) have the potential to create regulatory variation both through the disruption of existing DNA regulatory elements and through the creation of novel DNA regulatory elements. In a species with a large genome, such as maize, many TEs interspersed with genes create opportunities for significant allelic variation due to TE presence/absence polymorphisms among individuals. We used information on putative regulatory elements in combination with knowledge about TE polymorphisms in maize to identify TE insertions that interrupt existing accessible chromatin regions (ACRs) in B73 as well as examples of polymorphic TEs that contain ACRs among four inbred lines of maize including B73, Mo17, W22, and PH207. The TE insertions in three other assembled maize genomes (Mo17, W22, or PH207) that interrupt ACRs that are present in the B73 genome can trigger changes to the chromatin, suggesting the potential for both genetic and epigenetic influences of these insertions. Nearly 20% of the ACRs located over 2 kb from the nearest gene are located within an annotated TE. These are regions of unmethylated DNA that show evidence for functional importance similar to ACRs that are not present within TEs. Using a large panel of maize genotypes, we tested if there is an association between the presence of TE insertions that interrupt, or carry, an ACR and the expression of nearby genes. While most TE polymorphisms are not associated with expression for nearby genes, the TEs that carry ACRs exhibit enrichment for being associated with higher expression of nearby genes, suggesting that these TEs may contribute novel regulatory elements. These analyses highlight the potential for a subset of TEs to rewire transcriptional responses in eukaryotic genomes.


Asunto(s)
Cromatina/metabolismo , Elementos Transponibles de ADN/genética , Regulación de la Expresión Génica de las Plantas , Zea mays/genética , Cromatina/genética , Epigénesis Genética
19.
Mol Biol Evol ; 38(7): 2692-2703, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33565589

RESUMEN

Recent pangenome studies have revealed a large fraction of the gene content within a species exhibits presence-absence variation (PAV). However, coding regions alone provide an incomplete assessment of functional genomic sequence variation at the species level. Little to no attention has been paid to noncoding regulatory regions in pangenome studies, though these sequences directly modulate gene expression and phenotype. To uncover regulatory genetic variation, we generated chromosome-scale genome assemblies for thirty Arabidopsis thaliana accessions from multiple distinct habitats and characterized species level variation in Conserved Noncoding Sequences (CNS). Our analyses uncovered not only PAV and positional variation (PosV) but that diversity in CNS is nonrandom, with variants shared across different accessions. Using evolutionary analyses and chromatin accessibility data, we provide further evidence supporting roles for conserved and variable CNS in gene regulation. Additionally, our data suggests that transposable elements contribute to CNS variation. Characterizing species-level diversity in all functional genomic sequences may later uncover previously unknown mechanistic links between genotype and phenotype.


Asunto(s)
Arabidopsis/genética , Secuencia Conservada , Evolución Molecular , Variación Genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Duplicación de Gen , Genoma de Planta , Selección Genética
20.
Dev Cell ; 56(4): 557-568.e6, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33400914

RESUMEN

Crop productivity depends on activity of meristems that produce optimized plant architectures, including that of the maize ear. A comprehensive understanding of development requires insight into the full diversity of cell types and developmental domains and the gene networks required to specify them. Until now, these were identified primarily by morphology and insights from classical genetics, which are limited by genetic redundancy and pleiotropy. Here, we investigated the transcriptional profiles of 12,525 single cells from developing maize ears. The resulting developmental atlas provides a single-cell RNA sequencing (scRNA-seq) map of an inflorescence. We validated our results by mRNA in situ hybridization and by fluorescence-activated cell sorting (FACS) RNA-seq, and we show how these data may facilitate genetic studies by predicting genetic redundancy, integrating transcriptional networks, and identifying candidate genes associated with crop yield traits.


Asunto(s)
Estudios de Asociación Genética , Sitios de Carácter Cuantitativo/genética , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Zea mays/crecimiento & desarrollo , Zea mays/genética , Secuencia de Bases , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Protoplastos/metabolismo , Reproducibilidad de los Resultados , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA