Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Chem Biol Interact ; 382: 110617, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37385403

RESUMEN

Accumulation of the heavy metals molybdenum (Mo) and cadmium (Cd) in the liver can induce organelle damage and inflammation, resulting in hepatotoxicity. The effect of Mo and/or Cd on sheep hepatocytes was investigated by determining the relationship between the mitochondria-associated endoplasmic reticulum membrane (MAM) and NLRP3 inflammasome. Sheep hepatocytes were divided into four groups: the control group, Mo group (600 µM Mo), Cd group (4 µM Cd) and Mo + Cd group (600 µM Mo+4 µM Cd). The results showed that Mo and/or Cd exposure increased the levels of lactate dehydrogenase (LDH) and nitric oxide (NO) in the cell culture supernatant, elevated the levels of intracellular Ca2+ and mitochondrial Ca2+, downregulated the expression of MAM-related factors (IP3R, GRP75, VDAC1, PERK, ERO1-α, Mfn1, Mfn2, ERP44), shortened the length of the MAM and reduced the formation of the MAM structure, eventually causing MAM dysfunction. Moreover, the expression levels of NLRP3 inflammasome-related factors (NLRP3, Caspase1, IL-1ß, IL-6, TNF-α) were also dramatically increased after Mo and Cd exposure, triggering NLRP3 inflammasome production. However, an IP3R inhibitor, 2-APB treatment significantly alleviated these changes. Overall, the data indicate that Mo and Cd coexposure leads to structural disruption and dysfunction of MAM, disrupts cellular Ca2+ homeostasis, and increases NLRP3 inflammasome production in sheep hepatocytes. However, the inhibition of IP3R alleviates NLRP3 inflammasome production induced by Mo and Cd.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Ovinos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Cadmio/toxicidad , Molibdeno/toxicidad , Hepatocitos , Retículo Endoplásmico/metabolismo , Mitocondrias
2.
Ecotoxicol Environ Saf ; 224: 112618, 2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34392151

RESUMEN

Excessive molybdenum (Mo) and Cadmium (Cd) can adversely affect health status. However, the correlation between mitophagy and mitochondrial dysfunction caused by Mo and Cd and the underlying mechanisms are still unknown. The aim of this study was to investigate the relationship between mitophagy and mitochondrial dysfunction via the ROS-mediated PINK1/Parkin pathway caused by Mo and Cd. Here, Hepa1-6 cells were incubated with (NH4)6Mo7O24.4 H2O (600.0 µM Mo), CdCl2 (10.0 µM Cd), and the combination of reactive oxygen species (ROS) scavenger (N-acetyl-L-cysteine, NAC, 100.0 µM), or mitophagy inhibitor (Cyclosporin A, CsA, 1.0 µM) for 24 h. Results revealed that Mo or/and Cd elevated the level of intracellular ROS and malondialdehyde (MDA) content, reduced superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities. Additionally, Mo or/and Cd could observably increase the percentage of cells with low membrane potential and decrease the content of ATP, elevate the number of autophagosomes and LC3 puncta, upregulate the mRNA and protein levels of LC3II/LC3I, Parkin, Pink1, VDAC1, downregulate mRNA and protein levels of P62. Moreover, treatments with NAC could significantly alleviate the changes of the above factors co-induced by Mo and Cd, and CsA intensify the changes of the above factors. In summary, our results reveal that Mo and Cd co-exposure can cause oxidative stress and mitophagy via the ROS-mediated PINK1/Parkin pathway in Hepa1-6 cells, and inhibition of mitophagy aggravates Mo and Cd co-induced mitochondrial dysfunction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA