RESUMEN
The specific enrichment of multi-phosphopeptides in the presence of non-phosphopeptides and mono-phosphopeptides was still a challenge for phosphoproteomics research. Most of these enrichment materials relied on Zn, Ti, Sn, and other rare precious metals as the bonding center to enrich multi-phosphopeptides while ignoring the use of common metal elements. The addition of rare metals increased the cost of the experiment, which was not conducive to their large-scale application in biomedical proteomics laboratories. In addition, multiple high-speed centrifugation steps also resulted in the loss of low-abundance multi-phosphopeptides in the treatment procedure of biological samples. This study proposed the use of calcium, a common element, as the central bonding agent for synthesizing magnetic calcium phosphate materials (designated as CaP-Fe3O4). These materials aim to capture multi-phosphopeptides and identifying phosphorylation sites. The current results demonstrate that CaP-Fe3O4 exhibited excellent selection specificity, high sensitivity, and stability in the enrichment of multi-phosphopeptides and the identification of phosphorylation sites. Additionally, the introduction of magnetic separation not only reduced the time required for multi-phosphopeptides enrichment but also prevented the loss of these peptides during high-speed centrifugation. These findings contribute to the widespread application and advancement of phosphoproteomics research.
Asunto(s)
Fosfatos de Calcio , Fosfopéptidos , Fosfopéptidos/análisis , Fosfopéptidos/aislamiento & purificación , Fosfopéptidos/química , Fosfatos de Calcio/química , Humanos , Proteómica/métodos , Fosforilación , Espectrometría de Masas en Tándem/métodosRESUMEN
HYPOTHESIS: Silver nanoparticles coated with organic-inorganic hybrid silica or inorganic silica have antimicrobial ability, and the coating can also effectively improve the dispersion and stability of the particles. The slow release of silver ions (Ag+) can improve the antimicrobial activity of silver nanoparticles. The synthesized nanoparticles are light yellow, which does not affect the look and feel of the silk cultural relics and meets the requirements of the principle of minimum interference. EXPERIMENTS: Two kinds of silver-based nanoparticles were synthesized: silver core-shell nanoparticle (Ag@mSiO2) and silver yolk-shell nanoparticle (Ag@YSiO2). The morphology, surface properties and Ag+ release efficiency of two nanoparticles were characterized. The antimicrobial effects of two nanoparticles on Aspergillus niger (A. niger) and Penicillium citrinum (P. citrinum) were compared. FINDINGS: Both of Ag@mSiO2 and Ag@YSiO2 had uniform size and good stability. Two nanoparticles had pore structure and silver nanocore, which provided the basis for the dissolution and exchange of Ag+. Because more silver ions were released, Ag@mSiO2 had higher antimicrobial activity than Ag@YSiO2 for A. niger and P. citrinum. For various silk samples, Ag@mSiO2 exhibited excellent antimicrobial properties. Meanwhile, there was little change in the color and tearing strength of Ag@mSiO2 coated silk.
Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Nanopartículas del Metal/química , Plata/farmacología , Plata/química , Preparaciones de Acción Retardada , Antiinfecciosos/farmacología , Antiinfecciosos/química , Dióxido de Silicio/químicaRESUMEN
BACKGROUND: Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a clinically heterogeneous disorder characterized by epileptic seizures, psychosis, dyskinesia, consciousness impairments, and autonomic instability. Symptoms are always various. Sometimes it presents in milder or incomplete forms. We report 4 cases of anti-NMDAR encephalitis with incomplete forms, 3 cases of which were accompanied by neuromyelitis optica spectrum disorder or neurosyphilis respectively. CASE PRESENTATION: A 33-year-old man presented with dysarthria, movement disorder and occasional seizures. He had 6 relapses in 28 years. When suffered from upper respiratory tract syndrome, he developed behavioral and consciousness impairment. Cranial MRI was normal. Viral PCR studies and oncologic work-up were negative. Anti-NMDAR antibody was detected in CSF and serum. A 21-year-old female manifested dizziness and diplopia ten months and six months before, respectively. Both responded to steroid therapy and improved completely. This time she presented with progressive left limb and facial anesthesia, walking and holding unsteadily. Spinal cord MRI follow-up showed abnormality of medulla oblongata and cervical cord(C1). Anti-AQP4 and anti-NMDAR were positive in CSF. Steroid-pulse therapy ameliorated her symptoms. A 37-year-old male experienced worsening vision. He was confirmed neurosyphilis since the CSF tests for syphilis were positive. Protein was elevated and the oligoclonal IgG bands(OB) and anti-NMDAR was positive in CSF. Anti-aquaporin 4(AQP4) antibodies and NMO-IgG were negative. Cranial MRI showed high FLAIR signal on frontal lobe and low T2 signal adjacent to the right cornu posterious ventriculi lateralis. Treatment for neurosyphlis was commenced with gradual improvement. A 39-year-old male, developed serious behavioral and psychiatric symptoms. Examination showed abnormal pupils and unsteady gait. He was confirmed neurosyphilis according to the CSF tests for syphilis. Anti-NMDAR was positive in CSF and serum. Cranial MRI showed lateral ventricles and the third ventricle enlargement and signal abnormality involving bilateral temporal lobe, corona radiate and centrum semiovale. PenicillinG, pulsed methylprednisolone and intravenous immunoglobulin was administered. He was stable. CONCLUSION: Anti-NMDAR encephalitis can present in atypical types. When relapsing, it may present with partial aspects or with isolated symptoms of the full-blown syndrome. Anti-NMDAR encephalitis may be related to neuromyelitis optica spectrum disorder or neurosyphilis.