Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Dev Dyn ; 248(2): 173-188, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30444277

RESUMEN

BACKGROUND: Many human gene mutations have been linked to congenital heart disease (CHD), yet CHD remains a major health issue worldwide due in part to an incomplete understanding of the molecular basis for cardiac malformation. RESULTS: Here we identify the orthologous mouse Pou6f1 and zebrafish pouC as POU homeodomain transcription factors enriched in the developing heart. We find that pouC is a multi-functional transcriptional regulator containing separable activation, repression, protein-protein interaction, and DNA binding domains. Using zebrafish heart development as a model system, we demonstrate that pouC knockdown impairs cardiac morphogenesis and affects cardiovascular function. We also find that levels of pouC expression must be fine-tuned to enable proper heart formation. At the cellular level, we demonstrate that pouC knockdown disrupts atrioventricular canal (AVC) cardiomyocyte maintenance, although chamber myocyte specification remains intact. Mechanistically, we show that pouC binds a bmp4 intronic regulatory element to mediate transcriptional activation. CONCLUSIONS: Taken together, our study establishes pouC as a novel transcriptional input into the regulatory hierarchy that drives AVC morphogenesis in zebrafish. We anticipate that these findings will inform future efforts to explore functional conservation in mammals and potential association with atrioventricular septal defects in humans. Developmental Dynamics 248:173-188, 2019. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Proteína Morfogenética Ósea 4/genética , Regulación del Desarrollo de la Expresión Génica , Tabiques Cardíacos/crecimiento & desarrollo , Factores del Dominio POU/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología , Animales , Proteína Morfogenética Ósea 4/metabolismo , Corazón/embriología , Corazón/crecimiento & desarrollo , Defectos de los Tabiques Cardíacos , Tabiques Cardíacos/embriología , Ratones , Factores del Dominio POU/metabolismo , Unión Proteica , Factores de Transcripción , Pez Cebra , Proteínas de Pez Cebra/metabolismo
2.
Mol Cell Biol ; 35(4): 649-61, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25487574

RESUMEN

The cardiac conduction system coordinates electrical activation through a series of interconnected structures, including the atrioventricular node (AVN), the central connection point that delays impulse propagation to optimize cardiac performance. Although recent studies have uncovered important molecular details of AVN formation, relatively little is known about the transcriptional mechanisms that regulate AV delay, the primary function of the mature AVN. We identify here MyoR as a novel transcription factor expressed in Cx30.2(+) cells of the AVN. We show that MyoR specifically inhibits a Cx30.2 enhancer required for AVN-specific gene expression. Furthermore, we demonstrate that MyoR interacts directly with Gata4 to mediate transcriptional repression. Our studies reveal that MyoR contains two nonequivalent repression domains. While the MyoR C-terminal repression domain inhibits transcription in a context-dependent manner, the N-terminal repression domain can function in a heterologous context to convert the Hand2 activator into a repressor. In addition, we show that genetic deletion of MyoR in mice increases Cx30.2 expression by 50% and prolongs AV delay by 13%. Taken together, we conclude that MyoR modulates a Gata4-dependent regulatory circuit that establishes proper AV delay, and these findings may have wider implications for the variability of cardiac rhythm observed in the general population.


Asunto(s)
Nodo Atrioventricular/metabolismo , Factor de Transcripción GATA4/metabolismo , Transducción de Señal/genética , Factores de Transcripción/metabolismo , Animales , Nodo Atrioventricular/citología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sitios de Unión , Células COS , Chlorocebus aethiops , Conexinas/genética , Conexinas/metabolismo , Embrión de Mamíferos , Femenino , Factor de Transcripción GATA4/genética , Regulación de la Expresión Génica , Genes Reporteros , Frecuencia Cardíaca/fisiología , Luciferasas/genética , Luciferasas/metabolismo , Masculino , Ratones , Ratones Transgénicos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Factores de Transcripción/genética , Transcripción Genética , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
3.
Development ; 141(22): 4267-78, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25344074

RESUMEN

Various combinations of cardiogenic transcription factors, including Gata4 (G), Hand2 (H), Mef2c (M) and Tbx5 (T), can reprogram fibroblasts into induced cardiac-like myocytes (iCLMs) in vitro and in vivo. Given that optimal cardiac function relies on distinct yet functionally interconnected atrial, ventricular and pacemaker (PM) cardiomyocytes (CMs), it remains to be seen which subtypes are generated by direct reprogramming and whether this process can be harnessed to produce a specific CM of interest. Here, we employ a PM-specific Hcn4-GFP reporter mouse and a spectrum of CM subtype-specific markers to investigate the range of cellular phenotypes generated by reprogramming of primary fibroblasts. Unexpectedly, we find that a combination of four transcription factors (4F) optimized for Hcn4-GFP expression does not generate beating PM cells due to inadequate sarcomeric protein expression and organization. However, applying strict single-cell criteria to GHMT-reprogrammed cells, we observe induction of diverse cellular phenotypes, including those resembling immature forms of all three major cardiac subtypes (i.e. atrial, ventricular and pacemaker). In addition, we demonstrate that cells induced by GHMT are directly reprogrammed and do not arise from an Nxk2.5(+) progenitor cell intermediate. Taken together, our results suggest a remarkable degree of plasticity inherent to GHMT reprogramming and provide a starting point for optimization of CM subtype-specific reprogramming protocols.


Asunto(s)
Diferenciación Celular/fisiología , Inducción Embrionaria/fisiología , Fibroblastos/citología , Corazón/embriología , Miocitos Cardíacos/fisiología , Factores de Transcripción/metabolismo , Potenciales de Acción/fisiología , Análisis de Varianza , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Cartilla de ADN/genética , Fibroblastos/metabolismo , Fibroblastos/fisiología , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Inmunohistoquímica , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Ratones , Miocitos Cardíacos/citología , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/genética
4.
PLoS One ; 6(10): e25965, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22022483

RESUMEN

BACKGROUND: Crumbs (Crb), a cell polarity gene, has been shown to provide a positional cue for the apical membrane domain and adherens junction during Drosophila photoreceptor morphogenesis. It has recently been found that stable microtubules in developing Drosophila photoreceptors were linked to Crb localization. Coordinated interactions between microtubule and actin cytoskeletons are involved in many polarized cellular processes. Since Spectraplakin is able to bind both microtubule and actin cytoskeletons, the role of Spectraplakin was analyzed in the regulations of apical Crb domain in developing Drosophila photoreceptors. METHODOLOGY/PRINCIPAL FINDINGS: The localization pattern of Spectraplakin in developing pupal photoreceptors showed a unique intracellular distribution. Spectraplakin localized at rhabdomere terminal web which is at the basal side of the apical Crb or rhabdomere, and in between the adherens junctions. The spectraplakin mutant photoreceptors showed dramatic mislocalizations of Crb, adherens junctions, and the stable microtubules. This role of Spectraplakin in Crb and adherens junction regulation was further supported by spectraplakin's gain-of-function phenotype. Spectraplakin overexpression in photoreceptors caused a cell polarity defect including dramatic mislocalization of Crb, adherens junctions and the stable microtubules in the developing photoreceptors. Furthermore, a strong genetic interaction between spectraplakin and crb was found using a genetic modifier test. CONCLUSIONS/SIGNIFICANCE: In summary, we found a unique localization of Spectraplakin in photoreceptors, and identified the role of spectraplakin in the regulation of the apical Crb domain and adherens junctions through genetic mutational analysis. Our data suggest that Spectraplakin, an actin-microtubule cross-linker, is essential in the apical and adherens junction controls during the photoreceptors morphogenesis.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Proteínas de Microfilamentos/metabolismo , Morfogénesis , Células Fotorreceptoras de Invertebrados/metabolismo , Uniones Adherentes/metabolismo , Animales , Proteínas de Drosophila/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/genética , Microtúbulos/metabolismo , Células Fotorreceptoras de Invertebrados/citología , Transporte de Proteínas , Pupa/citología , Pupa/crecimiento & desarrollo , Pupa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA