Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 174: 116569, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38603886

RESUMEN

Alpha-alpha diaspirin-crosslinked human hemoglobin (DCLHb or ααHb) was a promising early generation red blood cell (RBC) substitute. The DCLHb was developed through a collaborative effort between the United States Army and Baxter Healthcare. The core design feature underlying its development was chemical stabilization of the tetrameric structure of hemoglobin (Hb) to prevent Hb intravascular dimerization and extravasation. DCLHb was developed to resuscitate warfighters on the battlefield, who suffered from life-threatening blood loss. However, extensive research revealed toxic side effects associated with the use of DCLHb that contributed to high mortality rates in clinical trials. This study explores whether scavenging Hb and heme via the apohemoglobin-haptoglobin (apoHb-Hp) complex can reduce DCLHb associated toxicity. Awake Golden Syrian hamsters were equipped with a window chamber model to characterize the microcirculation. Each group was first infused with either Lactated Ringer's or apoHb-Hp followed by a hypovolemic infusion of 10% of the animal's blood volume of DCLHb. Our results indicated that animals pretreated with apoHb-Hb exhibited improved microhemodynamics vs the group pretreated with Lactated Ringer's. While systemic acute inflammation was observed regardless of the treatment group, apoHb-Hp pretreatment lessened those effects with a marked reduction in IL-6 levels in the heart and kidneys compared to the control group. Taken together, this study demonstrated that utilizing a Hb and heme scavenger protein complex significantly reduces the microvasculature effects of ααHb, paving the way for improved HBOC formulations. Future apoHb-Hp dose optimization studies may identify a dose that can completely neutralize DCLHb toxicity.


Asunto(s)
Haptoglobinas , Hemoglobinas , Animales , Hemoglobinas/farmacología , Hemoglobinas/metabolismo , Humanos , Haptoglobinas/metabolismo , Masculino , Mesocricetus , Apoproteínas/química , Apoproteínas/farmacología , Sustitutos Sanguíneos/farmacología , Sustitutos Sanguíneos/química , Reactivos de Enlaces Cruzados/química , Cricetinae
2.
Front Bioeng Biotechnol ; 10: 912073, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35795159

RESUMEN

The gap between in vitro and in vivo assays has inspired biomimetic model development. Tissue engineered models that attempt to mimic the complexity of microvascular networks have emerged as tools for investigating cell-cell and cell-environment interactions that may be not easily viewed in vivo. A key challenge in model development, however, is determining how to recreate the multi-cell/system functional complexity of a real network environment that integrates endothelial cells, smooth muscle cells, vascular pericytes, lymphatics, nerves, fluid flow, extracellular matrix, and inflammatory cells. The objective of this mini-review is to overview the recent evolution of popular biomimetic modeling approaches for investigating microvascular dynamics. A specific focus will highlight the engineering design requirements needed to match physiological function and the potential for top-down tissue culture methods that maintain complexity. Overall, examples of physiological validation, basic science discoveries, and therapeutic evaluation studies will emphasize the value of tissue culture models and biomimetic model development approaches that fill the gap between in vitro and in vivo assays and guide how vascular biologists and physiologists might think about the microcirculation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA