Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 129(11): 2224-38, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27084579

RESUMEN

Dysfunction and loss of synapses are early pathogenic events in Alzheimer's disease. A central step in the generation of toxic amyloid-ß (Aß) peptides is the cleavage of amyloid precursor protein (APP) by ß-site APP-cleaving enzyme (BACE1). Here, we have elucidated whether downregulation of septin (SEPT) protein family members, which are implicated in synaptic plasticity and vesicular trafficking, affects APP processing and Aß generation. SEPT8 was found to reduce soluble APPß and Aß levels in neuronal cells through a post-translational mechanism leading to decreased levels of BACE1 protein. In the human temporal cortex, we identified alterations in the expression of specific SEPT8 transcript variants in a manner that correlated with Alzheimer's-disease-related neurofibrillary pathology. These changes were associated with altered ß-secretase activity. We also discovered that the overexpression of a specific Alzheimer's-disease-associated SEPT8 transcript variant increased the levels of BACE1 and Aß peptides in neuronal cells. These changes were related to an increased half-life of BACE1 and the localization of BACE1 in recycling endosomes. These data suggest that SEPT8 modulates ß-amyloidogenic processing of APP through a mechanism affecting the intracellular sorting and accumulation of BACE1.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Procesamiento Proteico-Postraduccional , Septinas/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Línea Celular Tumoral , Regulación hacia Abajo , Perfilación de la Expresión Génica , Células HEK293 , Semivida , Hipocampo/patología , Humanos , Espacio Intracelular/metabolismo , Ratones Endogámicos C57BL , Modelos Biológicos , Ovillos Neurofibrilares/genética , Ovillos Neurofibrilares/patología , Neuronas/metabolismo , Estabilidad Proteica , Transporte de Proteínas , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Septinas/genética , Lóbulo Temporal/metabolismo , Lóbulo Temporal/patología
2.
Mol Cell Neurosci ; 20(2): 257-70, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12093158

RESUMEN

Valproate (VPA) and lithium have been used for many years in the treatment of manic depression. However, their mechanisms of action remain poorly understood. Recent studies suggest that lithium and VPA inhibit GSK-3beta, a serine/threonine kinase involved in the insulin and WNT signaling pathways. Inhibition of GSK-3beta by high concentrations of lithium has been shown to mimic WNT-7a signaling by inducing axonal remodeling and clustering of synapsin I in developing neurons. Here we have compared the effect of therapeutic concentrations of lithium and VPA during neuronal maturation. VPA and, to a lesser extent, lithium induce clustering of synapsin I. In addition, lithium and VPA induce similar changes in the morphology of axons by increasing growth cone size, spreading, and branching. More importantly, both mood stabilizers decrease the level of MAP-1B-P, a GSK-3beta-phosphorylated form of MAP-1B in developing neurons, suggesting that therapeutic concentrations of these mood stabilizers inhibit GSK-3beta. In vitro kinase assays show that therapeutic concentrations of VPA do not inhibit GSK-3beta but that therapeutic concentrations of lithium partially inhibit GSK-3beta activity. Our results support the idea that both mood stabilizers inhibit GSK-3beta in developing neurons through different pathways. Lithium directly inhibits GSK-3beta in contrast to VPA, which inhibits GSK-3beta indirectly by an as-yet-unknown pathway. These findings may have important implications for the development of new strategies to treat bipolar disorders.


Asunto(s)
Antimaníacos/farmacología , Axones/efectos de los fármacos , Encéfalo/efectos de los fármacos , Proteínas Quinasas Dependientes de Calcio-Calmodulina/antagonistas & inhibidores , Diferenciación Celular/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Sinapsinas/efectos de los fármacos , Ácido Valproico/farmacología , Animales , Animales Recién Nacidos , Axones/metabolismo , Axones/ultraestructura , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Combinación de Medicamentos , Interacciones Farmacológicas/fisiología , Inhibidores Enzimáticos/farmacología , Glucógeno Sintasa Quinasa 3 , Inhibidores de Histona Desacetilasas , Histona Desacetilasas/metabolismo , Litio/farmacología , Ratones , Proteínas Asociadas a Microtúbulos/efectos de los fármacos , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Fibras Nerviosas/efectos de los fármacos , Fibras Nerviosas/metabolismo , Fibras Nerviosas/ultraestructura , Plasticidad Neuronal/fisiología , Proteínas Proto-Oncogénicas/efectos de los fármacos , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Sinapsinas/metabolismo , Proteínas Wnt
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA