Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Intervalo de año de publicación
1.
Front Microbiol ; 11: 1870, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849456

RESUMEN

Noroviruses (NoVs) are enteric viruses that cause acute gastroenteritis, and the pandemic GII.4 genotype is spreading and evolving rapidly. The recombinant GII.P16/GII.4_Sydney strain emerged in 2016, replacing GII.P31/GII.4_Sydney (GII.P31 formerly known as GII.Pe) in some countries. We analyzed the complete genome of 20 NoV strains (17 GII.P31/GII.4_ Sydney and 3 GII.P16/GII.4_Sydney) from Belém and Manaus, Brazil, collected from 2012 to 2016. Phylogenetic trees were constructed by maximum likelihood method from 191 full NoV-VP1 sequences, demonstrated segregation of the Sydney lineage in two larger clades, suggesting that GII.4 strains associated with GII.P16 already have modifications compared with GII.P31/GII.4. Additionally, the Bayesian Markov Chain Monte Carlo method was used to reconstruct a time-scaled phylogenetic tree formed by GII.P16 ORF1 sequences (n = 117) and three complete GII.P16 sequences from Belém. The phylogenetic tree indicated the presence of six clades classified into different capsid genotypes and locations. Evolutionary rates of the ORF1 gene of GII.P16 strains was estimated at 2.01 × 10-3 substitutions/site/year, and the most recent common ancestors were estimated in 2011 (2011-2012, 95% HPD). Comparing the amino acid (AA) sequence coding for ORF1 with the prototype strain GII.P16/GII.4, 36 AA changes were observed, mainly in the non-structural proteins p48, p22, and RdRp. GII.P16/GII.4 strains of this study presented changes in amino acids 310, 333, 373, and 393 of the antigenic sites in the P2 subdomain, and ML tree indicating the division within the Sydney lineage according to the GII.P16 and GII.P31 polymerases. Notably, as noroviruses have high recombination rates and the GII.4 genotype was prevalent for a long time in several locations, additional and continuous evolutionary analyses of this new genotype should be needed in the future.

2.
BMC Infect Dis ; 18(1): 147, 2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-29606095

RESUMEN

BACKGROUND: Globally, Norovirus (NoV) is considered the most common cause of diarrheal episodes across all age groups. Despite its wide genetic diversity, the GII.4 strain is the most predominant and has been associated with epidemics worldwide. In this study, we characterized sporadic cases of diarrhea from NoV-positive children, during a five-year period (2010-2014). METHODS: A total of 250 NoV-positive samples identified by an enzyme immunoassay (EIA) were subjected to RT-PCR and partial nucleotide sequencing for polymerase and capsid genes. Phylogenetic analysis was performed to identify NoV genotypes using the binary classification. In addition, sequences from the P2 subdomain (capsid) gene of GII-4 variants were characterized by evolutionary analyses, using the MCMC method implemented in the BEAST package. A 3D structure was built using protein modeling. RESULTS: Phylogenetic analysis demonstrated a predominance of genotype GII.4 (52.4% - 99/189), variants New Orleans_2009 and Sydney_2012 followed by GII.P7/GII.6 with 6.3% (12/189). Amino acid analyses of the GII.4 strains showed several important amino acid changes. A higher evolutionary rate was found, 7.7 × 10- 3 in the Sydney variant and 6.3 × 10- 3 in the New Orleans. Based in evolutionary analysis the time to the most recent common ancestor (TMRCA) has been calculated as estimates of the population divergence time. Thus, TMRCA for New Orleans and Sydney variant were 2008.7 and 2010.7, respectively. Also, we observed a lineage of transition between New Orleans and Sydney. CONCLUSION: This study describes the different strains of norovirus isolated from Amazonas state in Brazil during a five-year period. Considering that NoV are capable of changing their antigenic epitopes rapidly, a continuous surveillance is important to monitor the occurrence and changes of the NoV in the community through epidemiological studies. These results contribute to the understanding of NoV molecular epidemiology and its evolutionary dynamics in Amazonas state, Brazil.


Asunto(s)
Infecciones por Caliciviridae/complicaciones , Infecciones por Caliciviridae/epidemiología , Gastroenteritis/epidemiología , Gastroenteritis/virología , Norovirus/genética , Brasil/epidemiología , Infecciones por Caliciviridae/virología , Proteínas de la Cápside/genética , Niño , Preescolar , Epidemias , Flujo Genético , Variación Genética , Genotipo , Humanos , Lactante , Epidemiología Molecular , Norovirus/aislamiento & purificación , Filogenia , Factores de Tiempo
3.
Mem Inst Oswaldo Cruz ; 112(6): 391-395, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28591398

RESUMEN

BACKGROUND: Norovirus (NoV) is a major cause of acute gastroenteritis (AGE) worldwide, especially in children under five years. Studies involving the detection and molecular characterisation of NoV have been performed in Brazil, demonstrating its importance as an etiological agent of AGE. OBJECTIVES: The objectives of this study were to investigate the frequency of human NoV and to genotype the strains isolated from 0-14-year-old patients of AGE in Manaus, Brazil, over a period of two years. METHODS: A total of 426 faecal samples were collected between January 2010 and December 2011. All samples were tested for the presence of NoV antigens using a commercial enzyme immunoassay kit. RNA was extracted from all faecal suspensions and reverse transcription-polymerase chain reaction (RT-PCR) for the NoV-polymerase partial region was performed as a trial test. Positive samples were then subjected to PCR with specific primers for partial capsid genes, which were then sequenced. FINDINGS: NoV was detected in 150 (35.2%) faecal samples, for at least one of the two techniques used. NoV was detected in children from all age groups, with the highest positivity observed among the group of 1-2 years old. Clinically, fever was verified in 43% of the positive cases and 46.3% of the negative cases, and vomiting was observed in 75.8% and 70.8% cases in these groups, respectively. Monthly distribution showed that the highest positivity was observed in January 2010 (81.2%), followed by February and April 2010 and March 2011, when the positivity rate reached almost 50%. Phylogenetic analyses performed with 65 positive strains demonstrated that 58 (89.2%) cases of NoV belonged to genotype GII.4, five (7.7%) to GII.6, and one (1.5%) each to GII.7 and GII.3. MAIN CONCLUSIONS: This research revealed a high circulation of NoV GII.4 in Manaus and contributed to the understanding of the importance of this virus in the aetiology of AGE cases, especially in a region with such few studies available.


Asunto(s)
Infecciones por Caliciviridae/virología , Gastroenteritis/virología , Norovirus/genética , Norovirus/aislamiento & purificación , Enfermedad Aguda , Adolescente , Brasil/epidemiología , Infecciones por Caliciviridae/epidemiología , Niño , Preescolar , Heces/virología , Femenino , Gastroenteritis/epidemiología , Variación Genética , Genotipo , Humanos , Lactante , Recién Nacido , Masculino , Prevalencia , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
4.
Mem. Inst. Oswaldo Cruz ; 112(6): 391-395, June 2017. tab, graf
Artículo en Inglés | LILACS | ID: biblio-841804

RESUMEN

BACKGROUND Norovirus (NoV) is a major cause of acute gastroenteritis (AGE) worldwide, especially in children under five years. Studies involving the detection and molecular characterisation of NoV have been performed in Brazil, demonstrating its importance as an etiological agent of AGE. OBJECTIVES The objectives of this study were to investigate the frequency of human NoV and to genotype the strains isolated from 0-14-year-old patients of AGE in Manaus, Brazil, over a period of two years. METHODS A total of 426 faecal samples were collected between January 2010 and December 2011. All samples were tested for the presence of NoV antigens using a commercial enzyme immunoassay kit. RNA was extracted from all faecal suspensions and reverse transcription-polymerase chain reaction (RT-PCR) for the NoV-polymerase partial region was performed as a trial test. Positive samples were then subjected to PCR with specific primers for partial capsid genes, which were then sequenced. FINDINGS NoV was detected in 150 (35.2%) faecal samples, for at least one of the two techniques used. NoV was detected in children from all age groups, with the highest positivity observed among the group of 1-2 years old. Clinically, fever was verified in 43% of the positive cases and 46.3% of the negative cases, and vomiting was observed in 75.8% and 70.8% cases in these groups, respectively. Monthly distribution showed that the highest positivity was observed in January 2010 (81.2%), followed by February and April 2010 and March 2011, when the positivity rate reached almost 50%. Phylogenetic analyses performed with 65 positive strains demonstrated that 58 (89.2%) cases of NoV belonged to genotype GII.4, five (7.7%) to GII.6, and one (1.5%) each to GII.7 and GII.3. MAIN CONCLUSIONS This research revealed a high circulation of NoV GII.4 in Manaus and contributed to the understanding of the importance of this virus in the aetiology of AGE cases, especially in a region with such few studies available.


Asunto(s)
Humanos , Masculino , Femenino , Preescolar , Niño , Adolescente , Adulto , Persona de Mediana Edad , Anciano , Infecciones por Caliciviridae/epidemiología , Infecciones por Caliciviridae/virología , Norovirus/aislamiento & purificación , Gastroenteritis/epidemiología , Gastroenteritis/virología , Variación Genética , Brasil/epidemiología , Norovirus/genética , Heces/virología
5.
Infect Genet Evol ; 39: 365-371, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26861619

RESUMEN

Norovirus (NoV) is responsible for outbreaks and sporadic cases of nonbacterial acute gastroenteritis in humans worldwide. The virus consists of small round particles containing a single-stranded RNA genome that is divided into three Open Reading Frames. NoV evolves via mechanisms of antigenic drift and recombination, which lead to the emergence of new strains that are capable of causing global epidemics. Recombination usually occurs in the ORF1/ORF2 overlapping region and generates strains with different genotypes in the polymerase and capsid region. The primary objective of this study was to analyze recombination in positive-NoV samples. Specimens were collected during 2011, 2012 and 2014, from children under two years of age presenting gastrointestinal symptoms such as vomiting and diarrhea. The partial polymerase (B region), capsid (D region) genes and the ORF1-ORF2 overlap regions were sequenced in each sample. The recombinant analyses were performed in the Simplot software v.3.5.1 and RDP4 Beta v. 4.6 program. These analyses showed that GII.Pg/GII.1, GII.P7/GII.6, and GII.P22/GII.5 were recombinant strains. To our knowledge, this is the first time that the GII.P22/GII.5 and GII.Pg/GII.1 strains were described in South America and the GII.P7/GII.6 was detected in Northern of Brazil.


Asunto(s)
Infecciones por Caliciviridae/epidemiología , Infecciones por Caliciviridae/virología , Gastroenteritis/epidemiología , Gastroenteritis/virología , Norovirus/clasificación , Norovirus/genética , Recombinación Genética , Brasil/epidemiología , Biología Computacional/métodos , Genotipo , Humanos , Sistemas de Lectura Abierta , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA