Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
PLoS One ; 18(5): e0285505, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37200389

RESUMEN

Rhizobia are Gram-negative bacteria known for their ability to fix atmospheric N2 in symbiosis with leguminous plants. Current evidence shows that rhizobia carry in most cases a variable number of plasmids, containing genes necessary for symbiosis or free-living, a common feature being the presence of several plasmid replicons within the same strain. For many years, we have been studying the mobilization properties of pSmeLPU88b from the strain Sinorhizobium meliloti LPU88, an isolate from Argentina. To advance in the characterization of pSmeLPU88b plasmid, the full sequence was obtained. pSmeLPU88b is 35.9 kb in size, had an average GC % of 58.6 and 31 CDS. Two replication modules were identified in silico: one belonging to the repABC type, and the other to the repC. The replication modules presented high DNA identity to the replication modules from plasmid pMBA9a present in an S. meliloti isolate from Canada. In addition, three CDS presenting identity with recombinases and with toxin-antitoxin systems were found downstream of the repABC system. It is noteworthy that these CDS present the same genetic structure in pSmeLPU88b and in other rhizobial plasmids. Moreover, in all cases they are found downstream of the repABC operon. By cloning each replication system in suicide plasmids, we demonstrated that each of them can support plasmid replication in the S. meliloti genetic background, but with different stability behavior. Interestingly, while incompatibility analysis of the cloned rep systems results in the loss of the parental module, both obtained plasmids can coexist together.


Asunto(s)
Rhizobium , Sinorhizobium meliloti , Humanos , Sinorhizobium meliloti/genética , Plásmidos/genética , ADN Bacteriano/genética , Replicón/genética , Replicación del ADN/genética , Rhizobium/genética , Proteínas Bacterianas/genética
2.
mBio ; 13(5): e0194922, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36073816

RESUMEN

Rhizobia are Gram-negative bacteria that are able to establish a nitrogen-fixing symbiotic interaction with leguminous plants. Rhizobia genomes usually harbor several plasmids which can be transferred to other organisms by conjugation. Two main mechanisms of the regulation of rhizobial plasmid transfer have been described: quorum sensing (QS) and the rctA/rctB system. Nevertheless, new genes and molecules that modulate conjugative transfer have recently been described, demonstrating that new actors can tightly regulate the process. In this work, by means of bioinformatics tools and molecular biology approaches, two hypothetical genes are identified as playing key roles in conjugative transfer. These genes are located between conjugative genes of plasmid pRfaLPU83a from Rhizobium favelukesii LPU83, a plasmid that shows a conjugative transfer behavior depending on the genomic background. One of the two mentioned genes, rcgA, is essential for conjugation, while the other, rcgR, acts as an inhibitor of the process. In addition to introducing this new regulatory system, we show evidence of the functions of these genes in different genomic backgrounds and confirm that homologous proteins from non-closely related organisms have the same functions. These findings set up the basis for a new regulatory circuit of the conjugative transfer of plasmids. IMPORTANCE Extrachromosomal DNA elements, such as plasmids, allow for the adaptation of bacteria to new environments by conferring new determinants. Via conjugation, plasmids can be transferred between members of the same bacterial species, different species, or even to organisms belonging to a different kingdom. Knowledge about the regulatory systems of plasmid conjugative transfer is key in understanding the dynamics of their dissemination in the environment. As the increasing availability of genomes raises the number of predicted proteins with unknown functions, deeper experimental procedures help to elucidate the roles of these determinants. In this work, two uncharacterized proteins that constitute a new regulatory circuit with a key role in the conjugative transfer of rhizobial plasmids were discovered.


Asunto(s)
Conjugación Genética , Percepción de Quorum , Plásmidos/genética , Bacterias/genética , Nitrógeno , ADN , Transferencia de Gen Horizontal
3.
Front Plant Sci ; 12: 642576, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33643369

RESUMEN

One of the greatest inputs of available nitrogen into the biosphere occurs through the biological N2-fixation to ammonium as result of the symbiosis between rhizobia and leguminous plants. These interactions allow increased crop yields on nitrogen-poor soils. Exopolysaccharides (EPS) are key components for the establishment of an effective symbiosis between alfalfa and Ensifer meliloti, as bacteria that lack EPS are unable to infect the host plants. Rhizobium favelukesii LPU83 is an acid-tolerant rhizobia strain capable of nodulating alfalfa but inefficient to fix nitrogen. Aiming to identify the molecular determinants that allow R. favelukesii to infect plants, we studied its EPS biosynthesis. LPU83 produces an EPS I identical to the one present in E. meliloti, but the organization of the genes involved in its synthesis is different. The main gene cluster needed for the synthesis of EPS I in E. meliloti, is split into three different sections in R. favelukesii, which probably arose by a recent event of horizontal gene transfer. A R. favelukesii strain devoided of all the genes needed for the synthesis of EPS I is still able to infect and nodulate alfalfa, suggesting that attention should be directed to other molecules involved in the development of the symbiosis.

4.
PLoS One ; 15(8): e0238218, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32845909

RESUMEN

One of the most studied mechanisms involved in bacterial evolution and diversification is conjugative transfer (CT) of plasmids. Plasmids able to transfer by CT often encode beneficial traits for bacterial survival under specific environmental conditions. Rhizobium etli CFN42 is a Gram-negative bacterium of agricultural relevance due to its symbiotic association with Phaseolus vulgaris through the formation of Nitrogen-fixing nodules. The genome of R. etli CFN42 consists of one chromosome and six large plasmids. Among these, pRet42a has been identified as a conjugative plasmid. The expression of the transfer genes is regulated by a quorum sensing (QS) system that includes a traI gene, which encodes an acyl-homoserine lactone (AHL) synthase and two transcriptional regulators (TraR and CinR). Recently, we have shown that pRet42a can perform CT on the root surface and inside nodules. The aim of this work was to determine the role of plant-related compounds in the CT of pRet42a. We found that bean root exudates or root and nodule extracts induce the CT of pRet42a in the plant rhizosphere. One possibility is that these compounds are used as nutrients, allowing the bacteria to increase their growth rate and reach the population density leading to the activation of the QS system in a shorter time. We tested if P. vulgaris compounds could substitute the bacterial AHL synthesized by TraI, to activate the conjugation machinery. The results showed that the transfer of pRet42a in the presence of the plant is dependent on the bacterial QS system, which cannot be substituted by plant compounds. Additionally, individual compounds of the plant exudates were evaluated; among these, some increased and others decreased the CT. With these results, we suggest that the plant could participate at different levels to modulate the CT, and that some compounds could be activating genes in the conjugation machinery.


Asunto(s)
Conjugación Genética/genética , Fitoquímicos/farmacología , Plásmidos/genética , Rhizobium etli/genética , ADN Helicasas/genética , ADN Helicasas/metabolismo , Phaseolus/química , Phaseolus/microbiología , Percepción de Quorum/fisiología , Rizosfera , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA