Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Biol Chem ; 300(7): 107473, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38879007

RESUMEN

Provision of amino acids to the liver is instrumental for gluconeogenesis while it requires safe disposal of the amino group. The mitochondrial enzyme glutamate dehydrogenase (GDH) is central for hepatic ammonia detoxification by deaminating excessive amino acids toward ureagenesis and preventing hyperammonemia. The present study investigated the early adaptive responses to changes in dietary protein intake in control mice and liver-specific GDH KO mice (Hep-Glud1-/-). Mice were fed chow diets with a wide coverage of protein contents; i.e., suboptimal 10%, standard 20%, over optimal 30%, and high 45% protein diets; switched every 4 days. Metabolic adaptations of the mice were assessed in calorimetric chambers before tissue collection and analyses. Hep-Glud1-/- mice exhibited impaired alanine induced gluconeogenesis and constitutive hyperammonemia. The expression and activity of GDH in liver lysates were not significantly changed by the different diets. However, applying an in situ redox-sensitive assay on cryopreserved tissue sections revealed higher hepatic GDH activity in mice fed the high-protein diets. On the same section series, immunohistochemistry provided corresponding mapping of the GDH expression. Cosinor analysis from calorimetric chambers showed that the circadian rhythm of food intake and energy expenditure was altered in Hep-Glud1-/- mice. In control mice, energy expenditure shifted from carbohydrate to amino acid oxidation when diet was switched to high protein content. This shift was impaired in Hep-Glud1-/- mice and consequently the spontaneous physical activity was markedly reduced in GDH KO mice. These data highlight the central role of liver GDH in the energy balance adaptation to dietary proteins.

2.
J Clin Med ; 13(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38673624

RESUMEN

Background and Objectives: The effective treatment of chronic myeloid leukemia leads to the restoration of proper immune system function. We aimed to investigate fluctuations in circulating cytokines, angiogenic factors and complement components in patients with CML during the first year of treatment with TKI and correlate them with the degree of achieved molecular response. Material and Methods: We recruited 31 patients with newly diagnosed CML. Peripheral blood and bone marrow samples were obtained, and concentrations of serum proteins were measured using an immunology multiplex assay. Results: The study cohort was divided into two groups of optimal or non-optimal in accordance with the European Leukemia Net (ELN) guidelines. We found significantly higher concentrations of C1q, C4 and C5a in serum after 3 months of TKI treatment in patients who achieved optimal responses in the 6 months after diagnosis. The most alterations were observed during 12 months of therapy. Patients in the optimal response group were characterized by higher serum concentrations of TGF-ß, EGF, VEGF, Angiopoietin 1, IFN-γ and IL-8. Conclusions: The later plasma concentrations of complement components were significantly increased in patients with optimal responses. The changes after 12 months of treatment were particularly significant. Similar changes in bone marrow samples were observed.

3.
Int J Biol Macromol ; 265(Pt 2): 130726, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38490392

RESUMEN

The utilization of neurotrophins in medicine shows significant potential for addressing neurodegenerative conditions, such as age-related macular degeneration (AMD). However, the therapeutic use of neurotrophins has been restricted due to their short half-life. Here, we aimed to synthesize PEGylated nanoparticles based on electrostatic-driven interactions between human serum albumin (HSA), a carrier for adsorption; neurotrophin-3 (NT3); and brain-derived neurotrophic factor (BDNF). Electrophoretic (ELS) and multi-angle dynamic light scattering (MADLS) revealed that the PEGylated HSA-NT3-BDNF nanoparticles ranged from 10 to 430 nm in diameter and exhibited a low polydispersity index (<0.4) and a zeta potential of -8 mV. Based on microscale thermophoresis (MST), the estimated dissociation constant (Kd) from the HSA molecule of BDNF was 1.6 µM, and the Kd of NT3 was 732 µM. The nanoparticles were nontoxic toward ARPE-19 and L-929 cells in vitro and efficiently delivered BDNF and NT3. Based on the biodistribution of neurotrophins after intravitreal injection into BALB/c mice, both nanoparticles were gradually released in the mouse vitreous body within 28 days. PEGylated HSA-NT3-BDNF nanoparticles stabilize neurotrophins and maintain this characteristic in vivo. Thus, given the simplicity of the system, the nanoparticles may enhance the treatment of a variety of neurological disorders in the future.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Polietilenglicoles , Ratones , Humanos , Animales , Distribución Tisular , Potenciales de la Membrana
4.
Int J Mol Sci ; 24(23)2023 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-38069103

RESUMEN

Multiple myeloma (MM) is a plasma cell malignancy that accounts for 1% of all cancers and is the second-most-common hematological neoplasm. Bortezomib (BTZ) is a proteasome inhibitor widely implemented in the treatment of MM alone or in combination with other agents. The development of resistance to chemotherapy is one of the greatest challenges of modern oncology. Therefore, it is crucial to discover and implement new adjuvant therapies that can bypass therapeutic resistance. In this paper, we investigated the in vitro effect of methylation inhibitor 5-Aza-2'-deoxycytidine on the proliferative potential of MM cells and the development of resistance to BTZ. We demonstrate that alterations in the DNA methylation profile are associated with BTZ resistance. Moreover, the addition of methylation inhibitor 5-Aza-2'-deoxycytidine to BTZ-resistant MM cells led to a reduction in the proliferation of the BTZ-resistant phenotype, resulting in the restoration of sensitivity to BTZ. However, further in vitro and ex vivo studies are required before adjuvant therapy can be incorporated into existing treatment regimens.


Asunto(s)
Antineoplásicos , Mieloma Múltiple , Humanos , Bortezomib/farmacología , Bortezomib/uso terapéutico , Decitabina/farmacología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Metilación , Apoptosis/genética
5.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38069327

RESUMEN

The pathophysiology of the severe course of COVID-19 is multifactorial and not entirely elucidated. However, it is well known that the hyperinflammatory response and cytokine storm are paramount events leading to further complications. In this paper, we investigated the vascular response in the pathophysiology of severe COVID-19 and aimed to identify novel biomarkers predictive of ICU admission. The study group consisted of 210 patients diagnosed with COVID-19 (age range: 18-93; mean ± SD: 57.78 ± 14.16), while the control group consisted of 80 healthy individuals. We assessed the plasma concentrations of various vascular factors using the Luminex technique. Then, we isolated RNA from blood mononuclear cells and performed a bioinformatics analysis investigating various processes related to vascular response, inflammation and angiogenesis. Our results confirmed that severe COVID-19 is associated with vWF/ADAMTS 13 imbalance. High plasma concentrations of VEGFR and low DPP-IV may be potential predictors of ICU admission. SARS-CoV-2 infection impairs angiogenesis, hinders the generation of nitric oxide, and thus impedes vasodilation. The hypercoagulable state develops mainly in the early stages of the disease, which may contribute to the well-established complications of COVID-19.


Asunto(s)
COVID-19 , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Humanos , Persona de Mediana Edad , Adulto Joven , Inflamación , Unidades de Cuidados Intensivos , SARS-CoV-2 , Vasodilatación
6.
Int J Mol Sci ; 24(15)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37569301

RESUMEN

Intestinal trefoil factor 3 (TFF3) is a protein secreted by many cell types, and its serum and urine levels vary in patients with kidney disease. Therefore, the present study aimed to determine the diagnostic value of TFF3 in allogeneic kidney transplant patients included in the one-year follow-up. To analyze the influence of the diagnostic method used, we studied the type of biological material and the time elapsed since renal transplantation on the parameter's value. The study also aimed to investigate the relationship between TFF3 levels and creatinine and estimated glomerular filtration rate (eGFR) values in the serum and urine of the patients studied. The study used blood and urine samples from adult patients (n = 19) 24-48 h, 6 months, and 12 months after kidney transplantation. We collected one-time blood and urine from healthy subjects (n = 5) without renal disease. We applied immunoenzymatic ELISA and xMap Luminex flow fluorimetry to determine TFF3 in serum and urine. There was a significant difference in TFF3 levels in the serum of patients collected on the first one or two days after kidney transplantation compared to the control group (determined by ELISA and Luminex) and six months and one year after kidney transplantation (ELISA). We observed a correlation between creatinine concentration and urinary TFF3 concentration (ELISA and Luminex) and a negative association between eGFR and urinary (ELISA) and serum (Luminex) TFF3 concentration in patients on the first and second days after kidney transplantation. We noted significant correlations between eGFR and TFF3 levels in the serum and urine of patients determined by the two methods six months and one year after transplantation. In women, we observed that urinary TFF3 concentration increased significantly with increasing creatinine and that with increasing eGFR, urinary TFF3 concentration determined by two methods decreased significantly. In the present study, the choice of diagnostic method for the determination of TFF3 in serum and urine significantly affected the concentration of this biomarker. The values of this parameter determined by ELISA were higher than those assessed using the Luminex assay. Based on the presented results, we can conclude that TFF3 has great potential to monitor renal transplant patients. Determination of this protein in parallel with creatinine and eGFR levels in serum and urine may provide helpful diagnostic information.


Asunto(s)
Trasplante de Riñón , Adulto , Femenino , Humanos , Biomarcadores/orina , Creatinina , Ensayo de Inmunoadsorción Enzimática , Tasa de Filtración Glomerular , Riñón , Factor Trefoil-3 , Masculino
7.
J Clin Med ; 12(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36836111

RESUMEN

Evidence suggests a role of the immune system in the pathogenesis of a number of mental conditions, including schizophrenia (SCH). In terms of physiology, aside from its crucial protective function, the complement cascade (CC) is a critical element of the regeneration processes, including neurogenesis. Few studies have attempted to define the function of the CC components in SCH. To shed more light on this topic, we compared the levels of complement activation products (CAP) (C3a, C5a and C5b-9) in the peripheral blood of 62 patients with chronic SCH and disease duration of ≥ 10 years with 25 healthy controls matched for age, sex, BMI and smoking status. Concentrations of all the investigated CAP were elevated in SCH patients. However, after controlling for potential confounding factors, significant correlations were observed between SCH and C3a (M = 724.98 ng/mL) and C5a (M = 6.06 ng/mL) levels. In addition, multivariate logistic regression showed that C3a and C5b-9 were significant predictors of SCH. There were no significant correlations between any CAP and SCH symptom severity or general psychopathology in SCH patients. However, two significant links emerged between C3a and C5b-9 and global functioning. Increased levels of both complement activation products in the patient group as compared to healthy controls raise questions concerning the role of the CC in the etiology of SCH and further demonstrate dysregulation of the immune system in SCH patients.

8.
J Clin Med ; 12(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36675592

RESUMEN

Psoriasis is a common chronic, inflammatory skin disease characterised by keratinocyte hyperproliferation, parakeratosis, and T-cell infiltration. Adipose tissue has an endocrine function, producing an abundance of cytokines and adipokines. It has also been described that the major adipokines, leptin, resistin, and adiponectin, may be involved in the pathogenesis of psoriasis. The aim of the study was to examine the plasma levels of adiponectin, leptin, and resistin in patients with psoriasis and their correlations with disease activity parameters: Psoriasis Activity Severity Index (PASI), Dermatology Life Quality Index (DLQI), and Body Surface Area (BSA) index, as well as selected clinical parameters. The study included 53 patients with the plaque type and 31 healthy controls. The plasma concentrations of adiponectin were significantly lower in patients with psoriasis (p < 0.001) than in the control group. The plasma concentrations of leptin were higher in patients with psoriasis, however, due to high intra-patient variability of leptin plasma concentrations these differences did not reach statistical significance (p = 0.2). The plasma concentrations of resistin were significantly increased in patients with psoriasis compared to healthy controls (p = 0.02). There were no statistically significant correlations between adiponectin and leptin plasma concentrations and values of PASI, DLQI, and BSA. The resistin plasma concentrations correlated significantly with DLQI values. Additionally, we examined the correlations between adiponectin, leptin, and resistin plasma concentrations, and selected clinical parameters. Plasma concentrations of adiponectin correlated significantly with CRP values and ALT values. Leptin plasma concentrations correlated significantly with creatinine values. The results of our study confirm the role of adiponectin, leptin, and resistin in the pathogenesis of psoriasis.

9.
Nutrients ; 16(1)2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38201971

RESUMEN

Multiple myeloma (MM) is a plasma cell malignancy that, despite recent advances in therapy, continues to pose a major challenge to hematologists. Currently, different classes of drugs are applied to treat MM, among others, proteasome inhibitors, immunomodulatory drugs, and monoclonal antibodies. Most of them participate in an interplay with the immune system, hijacking its effector functions and redirecting them to anti-MM activity. Therefore, adjuvant therapies boosting the immune system may be potentially beneficial in MM therapy. Vitamin D (VD) and vitamin K (VK) have multiple so called "non-classical" actions. They exhibit various anti-inflammatory and anti-cancer properties. In this paper, we investigated the influence of VD and VK on epigenetic alterations associated with the proliferative potential of MM cells and the development of BTZ resistance. Our results showed that the development of BTZ resistance is associated with a global decrease in DNA methylation. On the contrary, both control MM cells and BTZ-resistant MM cells exposed to VD alone and to the combination of VD and VK exhibit a global increase in methylation. In conclusion, VD and VK in vitro have the potential to induce epigenetic changes that reduce the proliferative potential of plasma cells and may at least partially prevent the development of resistance to BTZ. However, further ex vivo and in vivo studies are needed to confirm the results and introduce new supplementation recommendations as part of adjuvant therapy.


Asunto(s)
Mieloma Múltiple , Vitamina D , Humanos , Vitamina D/farmacología , Bortezomib/farmacología , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Vitaminas , Vitamina K , Metilación de ADN , Suplementos Dietéticos
10.
Cancers (Basel) ; 16(1)2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38201512

RESUMEN

Bortezomib (BTZ) is widely implemented in the treatment of multiple myeloma (MM). Its main mechanism of action is very well established. BTZ selectively and reversibly inhibits the 26S proteasome. More precisely, it interacts with the chymotryptic site of the 20S proteasome and therefore inhibits the degradation of proteins. This results in the intracellular accumulation of misfolded or otherwise defective proteins leading to growth inhibition and apoptosis. As well as interfering with the ubiquitin-proteasome complex, BTZ elicits various epigenetic alterations which contribute to its cytotoxic effects as well as to the development of BTZ resistance. In this review, we summarized the epigenetic alterations elicited by BTZ. We focused on modifications contributing to the mechanism of action, those mediating drug-resistance development, and epigenetic changes promoting the occurrence of peripheral neuropathy. In addition, there are therapeutic strategies which are specifically designed to target epigenetic changes. Herein, we also reviewed epigenetic agents which might enhance BTZ-related cytotoxicity or restore the sensitivity to BTZ of resistant clones. Finally, we highlighted putative future perspectives regarding the role of targeting epigenetic changes in patients exposed to BTZ.

11.
Nutrients ; 14(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36501221

RESUMEN

Multiple myeloma (MM) remains an incurable hematological malignancy. Bortezomib (BTZ) is a proteasome inhibitor widely used in MM therapy whose potent activity is often hampered by the development of resistance. The immune system is vital in the pathophysiology of BTZ resistance. Vitamins D (VD) and K (VK) modulate the immune system; therefore, they are potentially beneficial in MM. The aim of the study was to evaluate the effect of BTZ therapy and VD and VK supplementation on the proliferation potential and gene expression profiles of MM cells in terms of the development of BTZ resistance. The U266 MM cell line was incubated three times with BTZ, VD and VK at different timepoints. Then, proliferation assays, RNA sequencing and bioinformatics analysis were performed. We showed BTZ resistance to be mediated by processes related to ATP metabolism and oxidative phosphorylation. The upregulation of genes from the SNORDs family suggests the involvement of epigenetic mechanisms. Supplementation with VD and VK reduced the proliferation of MM cells in both the non-BTZ-resistant and BTZ-resistant phenotypes. VD and VK, by restoring proper metabolism, may have overcome resistance to BTZ in vitro. This observation forms the basis for further clinical trials evaluating VD and VK as potential adjuvant therapies for MM patients.


Asunto(s)
Antineoplásicos , Mieloma Múltiple , Humanos , Bortezomib/farmacología , Bortezomib/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Transcriptoma , Vitaminas/uso terapéutico , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
12.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36555435

RESUMEN

Abnormalities in hematological parameters of peripheral blood have been noted in patients with endogenous Cushing's Syndrome (CS) in the corticotropin (ACTH)-dependent and ACTH-independent forms. Nevertheless, the exact mechanism of glucocorticoids (GCs) action on human hematopoiesis is still not entirely clear. The aim of the study was to determine whether endogenous excessive production of GCs could affect apoptosis of CD34+ cells enriched in hematopoietic stem and progenitor cells (HSPCs) collected from the peripheral blood of newly diagnosed CS patients. Flow cytometry, Annexin-V enzyme-linked immunosorbent assay, TUNEL assay, real-time quantitative PCR, and microarray RNA/miRNA techniques were used to characterize CS patients' HSPCs. We found that the glucocorticoid receptor (GR) protein expression levels in CS were higher than in healthy controls. A complex analysis of apoptotic status of CS patients' HSPC cells showed that GCs significantly augmented apoptosis in peripheral blood-derived CD34+ cells and results obtained using different methods to detect early and late apoptosis in analyzed cell population were consistent. CS was also associated with significant upregulation in several members of the BCL-2 superfamily and other genes associated with apoptosis control. Furthermore, global gene expression analysis revealed significantly higher expression of genes associated with programmed cell death control in HSPCs from CS patients. These findings suggest that human endogenous GCs have a direct pro-apoptotic activity in hematopoietic CD34+ cells derived from CS subjects before treatment.


Asunto(s)
Síndrome de Cushing , Glucocorticoides , Humanos , Glucocorticoides/farmacología , Glucocorticoides/metabolismo , Síndrome de Cushing/metabolismo , Antígenos CD34/metabolismo , Células Madre Hematopoyéticas/metabolismo , Apoptosis/fisiología , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Hormona Adrenocorticotrópica/metabolismo
13.
Onco Targets Ther ; 15: 1123-1141, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36238136

RESUMEN

Introduction: The aim of our research was to investigate changes in the molecular background of the immune response in the chronic phase (CP) of chronic myeloid leukaemia (CML) during treatment with tyrosine kinase inhibitors (TKIs). Methods: Global gene and miRNA expression profiles were assessed using genome-wide RNA and miRNA microarray technology in bone marrow mononuclear cells. Fifty-one patients were recruited, and bone marrow samples were taken at diagnosis before treatment with TKIs and after 3, 6, and 12 months of treatment with TKIs. The largest number of upregulated genes was observed when the 0-month group (time of diagnosis) was compared to the 3-month group; 1774 genes were significantly upregulated, and 390 genes were significantly downregulated. Discussion: Upregulated biological processes according to gene ontology (GO) classification involved basic cellular processes such as cell division, cell cycle, cell-cell adhesion, protein transport, mitotic nuclear division, apoptosis, and DNA replication. Differentially expressed miRNAs were annotated using GO classification to several immunity-related processes, including the T cell receptor signalling pathway, T cell costimulation, immune response, and inflammatory response. TKI therapy exerts a significant impact on cellular cycle processes and T-cell activation, which was proven at the molecular level.

14.
Int J Mol Sci ; 23(19)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36232655

RESUMEN

The exact pathophysiology of severe COVID-19 is not entirely elucidated, but it has been established that hyperinflammatory responses and cytokine storms play important roles. The aim of this study was to examine CMV status, select chemokines, and complement components in COVID-19, and how concentrations of given molecules differ over time at both molecular and proteomic levels. A total of 210 COVID-19 patients (50 ICU and 160 non-ICU patients) and 80 healthy controls were enrolled in this study. Concentrations of select chemokines (CXCL8, CXCL10, CCL2, CCL3, CCR1) and complement factors (C2, C9, CFD, C4BPA, C5AR1, CR1) were examined at mRNA and protein levels with regard to a COVID-19 course (ICU vs. non-ICU group) and CMV status at different time intervals. We detected several significant differences in chemokines and complement profiles between ICU and non-ICU groups. Pro-inflammatory chemokines and the complement system appeared to greatly contribute to the pathogenesis and development of severe COVID-19. Higher concentrations of CXCL8 and CCL2 in the plasma, with reduced mRNA expression presumably through negative feedback mechanisms, as well as CMV-positive status, correlated with more severe courses of COVID-19. Therefore, CXCL8, CCL2, and CMV seropositivity should be considered as new prognostic factors for severe COVID-19 courses. However, more in-depth research is needed.


Asunto(s)
COVID-19 , Infecciones por Citomegalovirus , Quimiocina CCL2/metabolismo , Quimiocinas/metabolismo , Infecciones por Citomegalovirus/complicaciones , Humanos , Pronóstico , Proteómica , ARN Mensajero
15.
Biomed Pharmacother ; 153: 113396, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36076479

RESUMEN

Recent studies have shown that methylation changes identified in blood cells of COVID-19 patients have a potential to be used as biomarkers of SARS-CoV-2 infection outcomes. However, different studies have reported different subsets of epigenetic lesions that stratify patients according to the severity of infection symptoms, and more importantly, the significance of those epigenetic changes in the pathology of the infection is still not clear. We used methylomics and transcriptomics data from the largest so far cohort of COVID-19 patients from four geographically distant populations, to identify casual interactions of blood cells' methylome in pathology of the COVID-19 disease. We identified a subset of methylation changes that is uniformly present in all COVID-19 patients regardless of symptoms. Those changes are not present in patients suffering from upper respiratory tract infections with symptoms similar to COVID-19. Most importantly, the identified epigenetic changes affect the expression of genes involved in interferon response pathways and the expression of those genes differs between patients admitted to intensive care units and only hospitalized. In conclusion, the DNA methylation changes involved in pathophysiology of SARS-CoV-2 infection, which are specific to COVID-19 patients, can not only be utilized as biomarkers in the disease management but also present a potential treatment target.


Asunto(s)
COVID-19 , Biomarcadores , COVID-19/genética , COVID-19/inmunología , Epigénesis Genética , Humanos , Interferones/genética , Interferones/inmunología , SARS-CoV-2
16.
J Clin Med ; 11(18)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36142901

RESUMEN

Psoriasis is a chronic, proliferative, inflammatory skin disease characterised by skin lesions and systemic symptoms. Numerous cytokines are produced in psoriasis as a result of inflammation. The aim of this study was to examine the plasma concentrations of IL-36α, IL-36ß, and IL-37 in psoriasis and their correlations with disease activity parameters. This study recruited 84 individuals, 53 with plaque-type psoriasis and 31 healthy controls. The plaque type of psoriasis is the most common type and is typically characterized by circular-to-oval red plaques distributed over body surfaces of the extremities and scalp. In patients with psoriasis, we observed statistically significantly decreased plasma concentrations of IL-36ß and IL-37. The concentrations of IL-36α were increased in comparison with control group. The plasma concentrations of IL-36α and IL-36ß were statistically significantly correlated with all tested parameters of disease activity: the Psoriasis Activity Severity Index, Dermatology Life Quality Index, and Body Surface Area Index. There were no statistically significant correlations between plasma levels of IL-37 and the tested parameters of disease activity. These results indicate a role of IL36α, IL-36ß, and IL-37 in the pathogenesis of psoriasis.

17.
Leuk Lymphoma ; 63(13): 3044-3051, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35999712

RESUMEN

For many years, intensive research has been carried out on the in-depth understanding of the pathogenesis of multiple myeloma (MM). Nevertheless, the multifactorial nature of the disease, the development of drug resistance, and the side effects of therapy, make it difficult to effectively treat patients. One of the many factors involved in the pathogenesis of MM is brain-derived neurotrophic factor (BDNF). This factor is widely described as a neuroregenerative and neuroprotective agent, but it also regulates non-neuronal cell functions, such as proliferation, apoptosis, and viability. Therefore, BDNF appears to be a good therapeutic target in MM. On the other hand, its decreased concentration during treatment closely correlates with the development of peripheral neuropathy (PN). BDNF dualism requires a detailed understanding of its action on individual molecular mechanisms. Perhaps the optimization of the BDNF level will contribute to the improvement of MM treatment and the reduction of chemotherapy side effects.


Asunto(s)
Mieloma Múltiple , Enfermedades del Sistema Nervioso Periférico , Humanos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/farmacología , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/etiología , Enfermedades del Sistema Nervioso Periférico/diagnóstico , Enfermedades del Sistema Nervioso Periférico/etiología , Encéfalo/patología
18.
Cancers (Basel) ; 14(14)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35884461

RESUMEN

Bortezomib (BTZ) is proteasome inhibitor, effectively used in the treatment of multiple myeloma, but frequently discontinued due to peripheral neuropathy, which develops in patients after consecutive treatment cycles. The molecular mechanisms affected by BTZ in neuronal cells, which result in neuropathy, remain unknown. However, BTZ is unlikely to lead to permanent morphological nerve damage, because neuropathy reverses after discontinuation of treatment, and nerve cells have very limited renewal capacity. We have previously shown that BTZ induces methylation changes in SH-SY5Y cells, which take part in the development of treatment resistance. Here, we hypothesized that BTZ affects the methylomes of mature neurons, and these changes are associated with BTZ neurotoxicity. Thus, we studied methylomes of neuronal cells, differentiated from the LUHMES cell line, after cycles of treatment with BTZ. Our results show that BTZ induces specific methylation changes in mature neurons, which are not present in SH-SY5Y cells after BTZ treatment. These changes appear to affect genes involved in morphogenesis, neurogenesis, and neurotransmission. Furthermore, identified methylation changes are significantly enriched within binding sites of transcription factors previously linked to neuron physiology, including EBF, PAX, DLX, LHX, and HNF family members. Altogether, our results indicate that methylation changes are likely to be involved in BTZ neurotoxicity.

19.
J Clin Med ; 11(10)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35628866

RESUMEN

Adiponectin is a secretory protein of adipocytes that plays an important role in pathological processes by participation in modulating the immune and inflammatory responses. The pro-inflammatory effect of adiponectin is observed in rheumatoid arthritis (RA). In this study, we examined adiponectin plasma levels and the expression of adiponectin in bone marrow tissue samples, synovium samples, and infrapatellar fat pad samples from patients with osteoarthritis (OA) and RA. Additionally we examined the expression of adiponectin receptors AdipoR1 and AdipoR2 in synovium samples and infrapatellar fat pad samples from patients with OA and RA. We also assessed the correlations between adiponectin plasma concentrations, adiponectin expression in bone marrow, synovium, infrapatellar fat pad, and plasma levels of selected cytokines. We found increased expression of adiponectin in synovium samples and infrapatellar fat pad samples from patients with RA as compared to patients with OA. There were no statistically significant differences of adiponectin plasma levels and adiponectin expression in bone marrow tissue samples between OA and RA patients. There were no differences in the expression of AdipoR1 and AdipoR2 at the mRNA level in synovial tissue and the infrapatellar fat pad between RA and OA patients. However, in immunohistochemical analysis in samples of the synovial membrane from RA patients, we observed very strong expression of adiponectin in intima cells, macrophages, and subintimal fibroblasts, such as synoviocytes, vs. strong expression in OA samples. Very strong expression of adiponectin was also noted in adipocytes of Hoffa's fat pad of RA patients. Expression of AdipoR1 was stronger in RA tissue samples, while AdipoR2 expression was very similar in both RA and OA samples. Our results showed increased adiponectin expression in the synovial membrane and Hoffa's pad in RA patients compared to that of OA patients. However, there were no differences in plasma adiponectin concentrations and its expression in bone marrow. The results suggest that adiponectin is a component of the inflammatory cascade that is present in RA. Pro-inflammatory factors enhance the expression of adiponectin, especially in joint tissues-the synovial membrane and Hoffa's fat pad. In turn, adiponectin also increases the expression of further pro-inflammatory mediators.

20.
Artículo en Inglés | MEDLINE | ID: mdl-35627537

RESUMEN

Although regenerative and inflammatory processes are involved in the etiopathogenesis of many psychiatric disorders, their roles are poorly understood. We investigate the potential role of stem cells (SC) and factors influencing the trafficking thereof, such as complement cascade (CC) components, phospholipid substrates, and chemokines, in the etiology of schizophrenia. We measured sphingosine-1-phosphate (S1P), stromal-derived factor 1 (SDF-1), and CC cleavage fragments (C3a, C5a, and C5b-C9; also known as the membrane attack complex) in the peripheral blood of 49 unrelated patients: 9 patients with ultra-high risk of psychosis (UHR), 22 patients with first-episode psychosis (FEP), and 18 healthy controls (HC). When compared with the HC group, the UHR and FEP groups had higher levels of C3a. We found no significant differences in hematopoietic SC, very small embryonic-like stem cell (VSEL), C5a, S1P, or SDF-1 levels in the UHR and FEP groups. However, among FEP patients, there was a significant positive correlation between VSELs (CD133+) and negative symptoms. These preliminary findings support the role of the immune system and regenerative processes in the etiology of schizophrenia. To establish the relevance of SC and other factors affecting the trafficking thereof as potential biomarkers of schizophrenia, more studies on larger groups of individuals from across the disease spectrum are needed.


Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Movilización de Célula Madre Hematopoyética , Células Madre Hematopoyéticas , Humanos , Psicopatología , Trastornos Psicóticos/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA