Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Int J Neural Syst ; 34(6): 2450032, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38624267

RESUMEN

Deep learning technology has been successfully used in Chest X-ray (CXR) images of COVID-19 patients. However, due to the characteristics of COVID-19 pneumonia and X-ray imaging, the deep learning methods still face many challenges, such as lower imaging quality, fewer training samples, complex radiological features and irregular shapes. To address these challenges, this study first introduces an extensive NSNP-like neuron model, and then proposes a multitask adversarial network architecture based on ENSNP-like neurons for chest X-ray images of COVID-19, called MAE-Net. The MAE-Net serves two tasks: (i) converting low-quality CXR images to high-quality images; (ii) classifying CXR images of COVID-19. The adversarial architecture of MAE-Net uses two generators and two discriminators, and two new loss functions have been introduced to guide the optimization of the network. The MAE-Net is tested on four benchmark COVID-19 CXR image datasets and compared them with eight deep learning models. The experimental results show that the proposed MAE-Net can enhance the conversion quality and the accuracy of image classification results.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Redes Neurales de la Computación , Humanos , Neuronas/fisiología , Radiografía Torácica , Modelos Neurológicos , Dinámicas no Lineales
2.
Int J Neural Syst ; 33(1): 2250060, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36328966

RESUMEN

Nonlinear spiking neural P (NSNP) systems are a class of neural-like computational models inspired from the nonlinear mechanism of spiking neurons. NSNP systems have a distinguishing feature: nonlinear spiking mechanism. To handle edge detection of images, this paper proposes a variant, nonlinear spiking neural P (NSNP) systems with two outputs (TO), termed as NSNP-TO systems. Based on NSNP-TO system, an edge detection framework is developed, termed as ED-NSNP detector. The detection ability of ED-NSNP detector relies on two convolutional kernels. To obtain good detection performance, particle swarm optimization (PSO) is used to optimize the parameters of the two convolutional kernels. The proposed ED-NSNP detector is evaluated on several open benchmark images and compared with seven baseline edge detection methods. The comparison results indicate the availability and effectiveness of the proposed ED-NSNP detector.


Asunto(s)
Algoritmos , Neuronas , Neuronas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA