Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Acta Bioeng Biomech ; 26(1): 37-46, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-39219076

RESUMEN

Purpose: The paper shows a preliminary study of the basic strength parameters of printed parts made of biocompatible polymers with ceramic layers applied to increase the strength of the tool cutting surface. Methods: The specimens were made from different materials and using different 3D printing technologies and the working surfaces that will eventually form the cutting element of the tool were coated with Al2O3. Gloss tests were conducted, properties of the coating, a scratch test of the coated surface, also evaluated surface to-pography. Results: Based on the conducted research, it was found that polymeric materials are characterized by sufficient strength and can be used for disposable tools, however, the use of thin layers of Al2O3 significantly increases the surface strength parameters, which may have a significant impact on the reliability and durability of the tools. The polymer surface covered with an Al2O3 layer is characterised by increased scratch resistance ranging from 24% to 75% depending on the core material and printing technology. The gloss of the surfaces is disproportionately low compared to currently used metal tools, which indicates that they can be used in endoscopic procedures. Conclusions: Based on the conducted research, it was found that the use of thin layers of Al2O3 covering polymer 3D prints is an excellent way to increase strength parameters such as scratch resistance, tribological parameters and light reflections arising on the surface as a result of endoscopic lighting are disproportionately small compared to metallic biomaterials. This gives great hope for using polymer 3D prints for personalised neurosurgical tools.


Asunto(s)
Cerámica , Ensayo de Materiales , Impresión Tridimensional , Cerámica/química , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Propiedades de Superficie , Óxido de Aluminio/química
2.
Materials (Basel) ; 14(22)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34832490

RESUMEN

The influence of dynamic loads resulting from human motor activity and electrocorrosion inside the human body on the strength parameters of artificial joint elements has not yet been investigated. Hip joint arthroplasty is the most common surgical procedure in the world that allows doctors to remove pain and restore motor skills in people with severe hip diseases, after accidents, and in the elderly. Based on the reports, this article assesses changes in the number of implanted endoprostheses in the years 2005-2019 and determines the trends and estimated changes in the number of implanted hip prostheses in the following decades. The study assesses changes in selected strength parameters of UHMW-PE polyethylene inserts of hip joint endoprostheses during their use in the human body. The research was carried out on appropriately collected samples from UHMW-PE cups removed from the human body with a known history and lifetime from 4 to 10 years. Patients' body weight ranged from 735 [N] to 820 [N], and the declared physical activity was similar in the entire research group. As part of the research, the values of changes in dynamic modules and the mechanical loss coefficient were determined in relation to the share of the crystalline and amorphous phases of artificial UHMW-PE cups, removed from the human body after different periods of exploitation under similar operating conditions. The analysis of selected strength parameters was performed at a temperature of 40 °C, which corresponds to the working conditions inside the human body. On the basis of numerical studies, the influence of changes in material parameters on the deformation of the artificial acetabulum during the patient's motor activity, which is one of the causes of fatigue destruction, was determined.

3.
Materials (Basel) ; 13(12)2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32545611

RESUMEN

The article assesses the strength and structural parameters of load-bearing layers of metal biobearings made of CoCrMo alloy. The research material consisted of unicompartmental knee joint endoprostheses used in the human body, removed due to excessive wear. No patient participated in the examinations. The endoprostheses used as research material underwent the liquidation procedures in the hospital, which has all necessary permissions and certifications to perform endoprosthetic procedures. Endoprostheses selected for the examinations had been used for 6 to 12 years at similar load conditions as declared by the patients, i.e., body weight of F = 835 N, declared activity expressed as the number of load cycles up to 100 thousand/year, and no artificial joint infections. To assess the homogeneity of the research material, the analysis of chemical composition using a Joel scanning electron microscope with EDS (Energy-dispersive X-ray spectroscopy) was made to exclude endoprostheses with various alloying additives. Microscopic examinations were performed using the Phenom XL microscope, while the wear surface was examined using a Keyence VHX-900F microscope. Several experimental tests were also carried out on load-bearing surfaces to assess changes in strength parameters of the base material after a known life cycle and load conditions. Material hardness using the Vickers method, yield point, critical value of stress intensity coefficient, and the coefficient of friction µ were evaluated. The examinations allowed for the systematization of wear in the knee and femoral components of unicompartmental hip endoprostheses. The statistical evaluation of the number and costs of hip joint replacement surgeries in Poland was also made.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA