Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Nature ; 629(8014): 1133-1141, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38750368

RESUMEN

The N-methyl-D-aspartate (NMDA) receptor is a glutamate-activated cation channel that is critical to many processes in the brain. Genome-wide association studies suggest that glutamatergic neurotransmission and NMDA receptor-mediated synaptic plasticity are important for body weight homeostasis1. Here we report the engineering and preclinical development of a bimodal molecule that integrates NMDA receptor antagonism with glucagon-like peptide-1 (GLP-1) receptor agonism to effectively reverse obesity, hyperglycaemia and dyslipidaemia in rodent models of metabolic disease. GLP-1-directed delivery of the NMDA receptor antagonist MK-801 affects neuroplasticity in the hypothalamus and brainstem. Importantly, targeting of MK-801 to GLP-1 receptor-expressing brain regions circumvents adverse physiological and behavioural effects associated with MK-801 monotherapy. In summary, our approach demonstrates the feasibility of using peptide-mediated targeting to achieve cell-specific ionotropic receptor modulation and highlights the therapeutic potential of unimolecular mixed GLP-1 receptor agonism and NMDA receptor antagonism for safe and effective obesity treatment.


Asunto(s)
Maleato de Dizocilpina , Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón , Obesidad , Receptores de N-Metil-D-Aspartato , Animales , Humanos , Masculino , Ratones , Ratas , Tronco Encefálico/metabolismo , Tronco Encefálico/efectos de los fármacos , Modelos Animales de Enfermedad , Maleato de Dizocilpina/efectos adversos , Maleato de Dizocilpina/farmacología , Maleato de Dizocilpina/uso terapéutico , Dislipidemias/tratamiento farmacológico , Dislipidemias/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Ratones Endogámicos C57BL , Plasticidad Neuronal/efectos de los fármacos , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Ratas Sprague-Dawley , Ratas Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores
3.
Mol Metab ; 82: 101907, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428817

RESUMEN

OBJECTIVES: There is significant interest in uncovering the mechanisms through which exercise enhances cognition, memory, and mood, and lowers the risk of neurodegenerative diseases. In this study, we utilize forced treadmill running and distance-matched voluntary wheel running, coupled with light sheet 3D brain imaging and c-Fos immunohistochemistry, to generate a comprehensive atlas of exercise-induced brain activation in mice. METHODS: To investigate the effects of exercise on brain activity, we compared whole-brain activation profiles of mice subjected to treadmill running with mice subjected to distance-matched wheel running. Male mice were assigned to one of four groups: a) an acute bout of voluntary wheel running, b) confinement to a cage with a locked running wheel, c) forced treadmill running, or d) placement on an inactive treadmill. Immediately following each exercise or control intervention, blood samples were collected for plasma analysis, and brains were collected for whole-brain c-Fos quantification. RESULTS: Our dataset reveals 255 brain regions activated by acute exercise in mice, the majority of which have not previously been linked to exercise. We find a broad response of 140 regulated brain regions that are shared between voluntary wheel running and treadmill running, while 32 brain regions are uniquely regulated by wheel running and 83 brain regions uniquely regulated by treadmill running. In contrast to voluntary wheel running, forced treadmill running triggers activity in brain regions associated with stress, fear, and pain. CONCLUSIONS: Our findings demonstrate a significant overlap in neuronal activation signatures between voluntary wheel running and distance-matched forced treadmill running. However, our analysis also reveals notable differences and subtle nuances between these two widely used paradigms. The comprehensive dataset is accessible online at www.neuropedia.dk, with the aim of enabling future research directed towards unraveling the neurobiological response to exercise.


Asunto(s)
Actividad Motora , Condicionamiento Físico Animal , Ratones , Masculino , Animales , Actividad Motora/fisiología , Encéfalo , Cognición
4.
5.
Nat Commun ; 15(1): 1192, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331907

RESUMEN

Overfeeding triggers homeostatic compensatory mechanisms that counteract weight gain. Here, we show that both lean and diet-induced obese (DIO) male mice exhibit a potent and prolonged inhibition of voluntary food intake following overfeeding-induced weight gain. We reveal that FGF21 is dispensable for this defense against weight gain. Targeted proteomics unveiled novel circulating factors linked to overfeeding, including the protease  legumain (LGMN). Administration of recombinant LGMN lowers body weight and food intake in DIO mice. The protection against weight gain is also associated with reduced vascularization in the hypothalamus and sustained reductions in the expression of the orexigenic neuropeptide genes, Npy and Agrp, suggesting a role for hypothalamic signaling in this homeostatic recovery from overfeeding. Overfeeding of melanocortin 4 receptor (MC4R) KO mice shows that these mice can suppress voluntary food intake and counteract the enforced weight gain, although their rate of weight recovery is impaired. Collectively, these findings demonstrate that the defense against overfeeding-induced weight gain remains intact in obesity and involves mechanisms independent of both FGF21 and MC4R.


Asunto(s)
Obesidad , Receptor de Melanocortina Tipo 4 , Masculino , Ratones , Animales , Receptor de Melanocortina Tipo 4/genética , Receptor de Melanocortina Tipo 4/metabolismo , Obesidad/genética , Obesidad/prevención & control , Aumento de Peso , Factores de Crecimiento de Fibroblastos/genética , Peso Corporal/fisiología
7.
Philos Trans R Soc Lond B Biol Sci ; 378(1885): 20220229, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37482786

RESUMEN

Body weight is under physiological regulation. When body fat mass decreases, a series of responses are triggered to promote weight regain by increasing food intake and decreasing energy expenditure. Analogous, in response to experimental overfeeding, excessive weight gain is counteracted by a reduction in food intake and possibly by an increase in energy expenditure. While low blood leptin and other hormones defend against weight loss, the signals that oppose overfeeding-induced fat mass expansion are still unknown. In this article, we discuss insights gained from overfeeding interventions in humans and intragastric overfeeding studies in rodents. We summarize the knowledge on the relative contributions of energy intake, energy expenditure and energy excretion to the physiological defence against overfeeding-induced weight gain. Furthermore, we explore literature supporting the existence of unidentified endocrine and non-endocrine pathways that defend against weight gain. Finally, we discuss the physiological drivers of constitutional thinness and suggest that overfeeding of individuals with constitutional thinness represents a gateway to understand the physiology of weight gain resistance in humans. Experimental overfeeding, combined with modern multi-omics techniques, has the potential to unveil the long-sought signalling pathways that protect against weight gain. Discovering these mechanisms could give rise to new treatments for obesity. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part I)'.


Asunto(s)
Delgadez , Aumento de Peso , Humanos , Delgadez/metabolismo , Aumento de Peso/fisiología , Obesidad/etiología , Obesidad/prevención & control , Obesidad/metabolismo , Ingestión de Energía , Metabolismo Energético/fisiología , Peso Corporal
8.
J Physiol ; 601(16): 3441-3442, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37401736
9.
Mol Metab ; 74: 101760, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37356805

RESUMEN

OBJECTIVE: Medium chain fatty acids (MCFAs), which are fatty acids with chain lengths of 8-12 carbon atoms, have been shown to reduce food intake in rodents and humans, but the underlying mechanisms are unknown. Unlike most other fatty acids, MCFAs are absorbed from the intestine into the portal vein and enter first the liver. We thus hypothesized that MCFAs trigger the release of hepatic factors that reduce appetite. METHODS: The liver transcriptome in mice that were orally administered MCFAs as C8:0 triacylglycerol (TG) was analyzed. Circulating growth/differentiation factor 15 (GDF15), tissue Gdf15 mRNA and food intake were investigated after acute oral gavage of MCFAs as C8:0 or C10:0 TG in mice. Effects of acute and subchronic administration of MCFAs as C8:0 TG on food intake and body weight were determined in mice lacking either the receptor for GDF15, GDNF Family Receptor Alpha Like (GFRAL), or GDF15. RESULTS: Hepatic and small intestinal expression of Gdf15 and circulating GDF15 increased after ingestion of MCFAs, while intake of typical dietary long-chain fatty acids (LCFAs) had no effect. Plasma GDF15 levels also increased in the portal vein with MCFA intake, indicating that in addition to the liver, the small intestine contributes to the rise in circulating GDF15. Acute oral provision of MCFAs decreased food intake over 24 h compared with a LCFA-containing bolus, and this anorectic effect required the GDF15 receptor, GFRAL. Moreover, subchronic oral administration of MCFAs reduced body weight over 7 days, an effect that was blunted in mice lacking either GDF15 or GFRAL. CONCLUSIONS: We have identified ingestion of MCFAs as a novel nutritional approach that increases circulating GDF15 in mice and have revealed that the GDF15-GFRAL axis is required for the full anorectic effect of MCFAs.


Asunto(s)
Depresores del Apetito , Humanos , Ratones , Animales , Depresores del Apetito/farmacología , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Peso Corporal , Ácidos Grasos/metabolismo , Dieta Alta en Grasa , Triglicéridos , Ingestión de Alimentos , Factor 15 de Diferenciación de Crecimiento/genética , Factor 15 de Diferenciación de Crecimiento/metabolismo
10.
Nat Rev Endocrinol ; 19(9): 500, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37291457
11.
Nat Metab ; 5(4): 677-698, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37055619

RESUMEN

Lactate is a circulating metabolite and a signalling molecule with pleiotropic physiological effects. Studies suggest that lactate modulates energy balance by lowering food intake, inducing adipose browning and increasing whole-body thermogenesis. Yet, like many other metabolites, lactate is often commercially produced as a counterion-bound salt and typically administered in vivo through hypertonic aqueous solutions of sodium L-lactate. Most studies have not controlled for injection osmolarity and the co-injected sodium ions. Here, we show that the anorectic and thermogenic effects of exogenous sodium L-lactate in male mice are confounded by the hypertonicity of the injected solutions. Our data reveal that this is in contrast to the antiobesity effect of orally administered disodium succinate, which is uncoupled from these confounders. Further, our studies with other counterions indicate that counterions can have confounding effects beyond lactate pharmacology. Together, these findings underscore the importance of controlling for osmotic load and counterions in metabolite research.


Asunto(s)
Depresores del Apetito , Ratones , Masculino , Animales , Depresores del Apetito/farmacología , Ácido Láctico , Termogénesis/fisiología , Sodio , Concentración Osmolar
12.
J Thorac Cardiovasc Surg ; 165(4): 1285-1297.e6, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-34116854

RESUMEN

OBJECTIVE: In complex and high-risk aortic root disease, the porcine Freestyle stentless bioprosthesis (Medtronic Inc, Minneapolis, Minn) is an important surgical treatment option. We aimed to determine prevalence and clinical effect of structural and functional abnormalities after full-root Freestyle implantation. METHODS: Our cross-sectional 2-center study combined with clinical follow-up included 253 patients with full-root Freestyle bioprostheses implanted from 1999 to 2017. Patients underwent transthoracic echocardiography (TTE) and contrast-enhanced, electrocardiogram-gated 4-dimensional cardiac computed tomography (4DCT) at median age 70 (interquartile range, 62-75) years. After 4DCT, clinical follow-up continued throughout 2018. Median follow-up was 3.3 years before 4DCT and 1.4 years after. RESULTS: We identified abnormalities in 46% of patients, including pseudoaneurysms (n = 32; 13%), moderate or severe coronary ostial stenosis (n = 54; 21%), and moderate-severe leaflet thickening or reduced leaflet motion (n = 51; 20%). TTE only identified 1 patient with pseudoaneurysm. After 4DCT, the unadjusted hazard ratio for surgical reintervention among patients with abnormal 4DCT was 4.2 (95% confidence interval, 1.2-15.3), in all, 10% required a reintervention. 4DCT abnormalities were associated with a statistically nonsignificant increased risk of death, stroke, or myocardial infarction (hazard ratio obtained using Cox proportional hazards regression analysis, 2.4; 95% confidence interval, 0.7-7.6). In all, 4.0% died, 3.6% had a myocardial infarction, and 2.0% had a stroke. CONCLUSIONS: Structural and functional abnormalities of the aortic root are frequent after Freestyle implantation and TTE appears to be insufficient for follow-up. Abnormalities might be associated with increased risk of reintervention and potentially adverse clinical outcomes. Longer follow-up and larger study populations are needed to further clarify the clinical implications of abnormalities identified with 4DCT.


Asunto(s)
Bioprótesis , Implantación de Prótesis de Válvulas Cardíacas , Prótesis Valvulares Cardíacas , Infarto del Miocardio , Humanos , Animales , Porcinos , Anciano , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/cirugía , Implantación de Prótesis de Válvulas Cardíacas/efectos adversos , Xenoinjertos , Estudios Transversales , Infarto del Miocardio/cirugía , Diseño de Prótesis , Estudios de Seguimiento , Resultado del Tratamiento
13.
Mol Metab ; 64: 101573, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35970448

RESUMEN

BACKGROUND: Body weight is defended by strong homeostatic forces. Several of the key biological mechanisms that counteract weight loss have been unraveled over the last decades. In contrast, the mechanisms that protect body weight and fat mass from becoming too high remain largely unknown. Understanding this aspect of energy balance regulation holds great promise for curbing the obesity epidemic. Decoding the physiological and molecular pathways that defend against weight gain can be achieved by an intervention referred to as 'experimental overfeeding'. SCOPE OF THE REVIEW: In this review, we define experimental overfeeding and summarize the studies that have been conducted on animals. This field of research shows that experimental overfeeding induces a potent and prolonged hypophagic response that seems to be conserved across species and mediated by unidentified endocrine factors. In addition, the literature shows that experimental overfeeding can be used to model the development of non-alcoholic steatohepatitis and that forced intragastric infusion of surplus calories lowers survival from infections. Finally, we highlight studies indicating that experimental overfeeding can be employed to study the transgenerational effects of a positive energy balance and how dietary composition and macronutrient content might impact energy homeostasis and obesity development in animals. MAJOR CONCLUSIONS: Experimental overfeeding of animals is a powerful yet underappreciated method to investigate the defense mechanisms against weight gain. This intervention also represents an alternative approach for studying the pathophysiology of metabolic liver diseases and the links between energy balance and infection biology. Future research in this field could help uncover why humans respond differently to an obesogenic environment and reveal novel pathways with therapeutic potential against obesity and cardiometabolic disorders.


Asunto(s)
Obesidad , Aumento de Peso , Animales , Peso Corporal , Ingestión de Energía , Metabolismo Energético/fisiología , Humanos , Obesidad/metabolismo , Aumento de Peso/fisiología
14.
Cell Metab ; 34(8): 1085-1087, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35921816

RESUMEN

Lactate released from skeletal muscle during high-intensity exercise gives rise to a surge in circulating lactate-derived pseudo-dipeptide metabolites including N-lactoyl-phenylalanine (Lac-Phe). In a recent Nature paper, Li et al. use genetic and pharmacological evidence to now propose Lac-Phe to be an "exercise hormone" that suppresses appetite and obesity.


Asunto(s)
Ácido Láctico , Fenilalanina , Ejercicio Físico/fisiología , Humanos , Músculo Esquelético , Obesidad
15.
Cell Rep ; 40(8): 111258, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-36001956

RESUMEN

Metformin is a blood-glucose-lowering medication with physiological effects that extend beyond its anti-diabetic indication. Recently, it was reported that metformin lowers body weight via induction of growth differentiation factor 15 (GDF15), which suppresses food intake by binding to the GDNF family receptor α-like (GFRAL) in the hindbrain. Here, we corroborate that metformin increases circulating GDF15 in mice and humans, but we fail to confirm previous reports that the GDF15-GFRAL pathway is necessary for the weight-lowering effects of metformin. Instead, our studies in wild-type, GDF15 knockout, and GFRAL knockout mice suggest that the GDF15-GFRAL pathway is dispensable for the effects of metformin on energy balance. The data presented here question whether metformin is a sufficiently strong stimulator of GDF15 to drive anorexia and weight loss and emphasize that additional work is needed to untangle the relationship among metformin, GDF15, and energy balance.


Asunto(s)
Factor 15 de Diferenciación de Crecimiento , Metformina , Animales , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor 15 de Diferenciación de Crecimiento/metabolismo , Humanos , Metformina/farmacología , Metformina/uso terapéutico , Ratones , Obesidad/metabolismo , Pérdida de Peso
16.
Transl Psychiatry ; 12(1): 330, 2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35953488

RESUMEN

Psilocybin and other serotonergic psychedelics have re-emerged as therapeutics for neuropsychiatric disorders, including addiction. Psilocybin induces long-lasting effects on behavior, likely due to its profound ability to alter consciousness and augment neural connectivity and plasticity. Impaired synaptic plasticity in obesity contributes to 'addictive-like' behaviors, including heightened motivation for palatable food, and excessive food seeking and consumption. Here, we evaluate the effects of psilocybin on feeding behavior, energy metabolism, and as a weight-lowering agent in mice. We demonstrate that a single dose of psilocybin substantially alters the prefrontal cortex transcriptome but has no acute or long-lasting effects on food intake or body weight in diet-induced obese mice or in genetic mouse models of obesity. Similarly, sub-chronic microdosing of psilocybin has no metabolic effects in obese mice and psilocybin does not augment glucagon-like peptide-1 (GLP-1) induced weight loss or enhance diet-induced weight loss. A single high dose of psilocybin reduces sucrose preference but fails to counter binge-like eating behavior. Although these preclinical data discourage clinical investigation, there may be nuances in the mode of action of psychedelic drugs that are difficult to capture in rodent models, and thus require human evaluation to uncover.


Asunto(s)
Alucinógenos , Psilocibina , Animales , Metabolismo Energético , Conducta Alimentaria , Alucinógenos/farmacología , Humanos , Ratones , Obesidad/tratamiento farmacológico , Psilocibina/farmacología , Pérdida de Peso
17.
J Thorac Cardiovasc Surg ; 164(6): 1712-1724.e10, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34452760

RESUMEN

OBJECTIVES: Our objective was to examine intermediate-term survival and reinterventions in unselected patients, stratified according to indication, who received a Freestyle (Medtronic Inc, Minneapolis, Minn) bioprosthesis as a full aortic root replacement. METHODS: Data from medical records were retrospectively collected for patients who had aortic root replacement using Freestyle bioprostheses between 1999 and 2018 at 6 North-Atlantic centers. Survival status was extracted from national registries and results stratified according to indication for surgery. RESULTS: We included 1030 implantations in 1008 patients with elective indications for surgery: aneurysm (39.8%), small root (8.3%), and other (13.8%), and urgent/emergent indications: endocarditis (26.7%) and Stanford type A aortic dissection (11.4%). Across indications, 46.3% were nonelective cases and 34.0% were reoperations. Median age was 66.0 (interquartile range, 58.0-71.8) years and median follow-up was 5.0 (interquartile range, 2.6-7.9) years. Thirty-day mortality varied from 2.9% to 27.4% depending on indication. Intermediate survival for 90-day survivors with elective indications were not different from the general population standardized for age and sex (P = .95, .83, and .16 for aneurysms, small roots, and other, respectively). In contrast, patients with endocarditis and type A dissection had excess mortality (P < .001). Freedom from valve reinterventions was 95.0% and 94.4% at 5 and 8 years, respectively. In all, 52 patients (5.2%) underwent reinterventions, most because of endocarditis. CONCLUSIONS: At intermediate term follow-up this retrospective study provides further support for the use of the Freestyle bioprosthesis in the real-world setting of diverse, complex, and often high-risk aortic root replacement and suggests that outcome is determined by patient and disease, rather than by prosthesis, characteristics.


Asunto(s)
Bioprótesis , Endocarditis , Implantación de Prótesis de Válvulas Cardíacas , Prótesis Valvulares Cardíacas , Humanos , Anciano , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/cirugía , Implantación de Prótesis de Válvulas Cardíacas/métodos , Estudios Retrospectivos , Xenoinjertos , Diseño de Prótesis , Resultado del Tratamiento , Endocarditis/cirugía , Estudios de Seguimiento
18.
Nat Commun ; 12(1): 1041, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33589633

RESUMEN

Growing evidence supports that pharmacological application of growth differentiation factor 15 (GDF15) suppresses appetite but also promotes sickness-like behaviors in rodents via GDNF family receptor α-like (GFRAL)-dependent mechanisms. Conversely, the endogenous regulation of GDF15 and its physiological effects on energy homeostasis and behavior remain elusive. Here we show, in four independent human studies that prolonged endurance exercise increases circulating GDF15 to levels otherwise only observed in pathophysiological conditions. This exercise-induced increase can be recapitulated in mice and is accompanied by increased Gdf15 expression in the liver, skeletal muscle, and heart muscle. However, whereas pharmacological GDF15 inhibits appetite and suppresses voluntary running activity via GFRAL, the physiological induction of GDF15 by exercise does not. In summary, exercise-induced circulating GDF15 correlates with the duration of endurance exercise. Yet, higher GDF15 levels after exercise are not sufficient to evoke canonical pharmacological GDF15 effects on appetite or responsible for diminishing exercise motivation.


Asunto(s)
Regulación del Apetito/fisiología , Ejercicio Físico/fisiología , Conducta Alimentaria/fisiología , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Factor 15 de Diferenciación de Crecimiento/genética , Resistencia Física/fisiología , Adulto , Animales , Creatina Quinasa/sangre , Creatina Quinasa/genética , Regulación de la Expresión Génica , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/deficiencia , Factor 15 de Diferenciación de Crecimiento/sangre , Factor 15 de Diferenciación de Crecimiento/metabolismo , Humanos , Interleucina-10/sangre , Interleucina-10/genética , Interleucina-6/administración & dosificación , Leptina/sangre , Leptina/genética , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Motivación/fisiología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Condicionamiento Físico Animal , Factores de Tiempo
19.
Mol Nutr Food Res ; 65(2): e2000681, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33274552

RESUMEN

SCOPE: Brown and brite adipocytes within the mammalian adipose organ provide non-shivering thermogenesis and thus, have an exceptional capacity to dissipate chemical energy as heat. Polyunsaturated fatty acids (PUFA) of the n3-series, abundant in fish oil, have been repeatedly demonstrated to enhance the recruitment of thermogenic capacity in these cells, consequently affecting body adiposity and glucose tolerance. These effects are scrutinized in mice housed in a thermoneutral environment and in a human dietary intervention trial. METHODS AND RESULTS: Mice are housed in a thermoneutral environment eliminating the superimposing effect of mild cold-exposure on thermogenic adipocyte recruitment. Dietary fish oil supplementation in two different inbred mouse strains neither affects body mass trajectory nor enhances the recruitment of brown and brite adipocytes, both in the presence and absence of a ß3-adrenoreceptor agonist imitating the effect of cold-exposure on adipocytes. In line with these findings, dietary fish oil supplementation of persons with overweight or obesity fails to recruit thermogenic adipocytes in subcutaneous adipose tissue. CONCLUSION: Thus, the authors' data question the hypothesized potential of n3-PUFA as modulators of adipocyte-based thermogenesis and energy balance regulation.


Asunto(s)
Adipocitos Beige/efectos de los fármacos , Adipocitos Marrones/efectos de los fármacos , Ácidos Grasos Omega-3/farmacología , Aceites de Pescado/farmacología , Grasa Subcutánea/efectos de los fármacos , Tejido Adiposo Blanco/citología , Tejido Adiposo Blanco/efectos de los fármacos , Adulto , Animales , Suplementos Dietéticos , Ácidos Grasos Omega-3/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Prueba de Tolerancia a la Glucosa , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos , Persona de Mediana Edad , Aceite de Palma/farmacología , Aceites de Plantas/farmacología , Grasa Subcutánea/fisiología , Termogénesis/efectos de los fármacos , Termogénesis/fisiología , Ácido gammalinolénico/farmacología
20.
Interact Cardiovasc Thorac Surg ; 31(5): 664-666, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32889539

RESUMEN

The use of aortic homograft in infective pathology is well described. Its use in the repair of post-transplant airway complications has been seldom reported. Herein, we report our experience with the successful use of aortic homograft in the management of post-transplant large airway complications in two patients.


Asunto(s)
Aorta/trasplante , Bronquios/cirugía , Enfermedades Pulmonares/cirugía , Trasplante de Pulmón/efectos adversos , Dehiscencia de la Herida Operatoria/cirugía , Adulto , Bronquios/patología , Humanos , Enfermedades Pulmonares/etiología , Enfermedades Pulmonares/patología , Masculino , Persona de Mediana Edad , Reoperación , Terapia Recuperativa , Dehiscencia de la Herida Operatoria/diagnóstico , Dehiscencia de la Herida Operatoria/etiología , Trasplante Homólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA