Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell Rep Med ; 5(1): 101348, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38151020

RESUMEN

The discovery of exercise-regulated circulatory factors has fueled interest in organ crosstalk, especially between skeletal muscle and adipose tissue, and the role in mediating beneficial effects of exercise. We studied the adipose tissue transcriptome in men and women with normal glucose tolerance or type 2 diabetes following an acute exercise bout, revealing substantial exercise- and time-dependent changes, with sustained increase in inflammatory genes in type 2 diabetes. We identify oncostatin-M as one of the most upregulated adipose-tissue-secreted factors post-exercise. In cultured human adipocytes, oncostatin-M enhances MAPK signaling and regulates lipolysis. Oncostatin-M expression arises predominantly from adipose tissue immune cell fractions, while the corresponding receptors are expressed in adipocytes. Oncostatin-M expression increases in cultured human Thp1 macrophages following exercise-like stimuli. Our results suggest that immune cells, via secreted factors such as oncostatin-M, mediate a crosstalk between skeletal muscle and adipose tissue during exercise to regulate adipocyte metabolism and adaptation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Femenino , Humanos , Masculino , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Células Cultivadas , Diabetes Mellitus Tipo 2/metabolismo , Lipólisis
2.
Cell Metab ; 35(10): 1722-1735.e5, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37689069

RESUMEN

Except for latitudes close to the equator, seasonal variation in light hours can change dramatically between summer and winter. Yet investigations into the interplay between energy metabolism and circadian rhythms typically use a 12 h light:12 h dark photoperiod corresponding to the light duration at the equator. We hypothesized that altering the seasonal photoperiod affects both the rhythmicity of peripheral tissue clocks and energy homeostasis. Mice were housed at photoperiods representing either light hours in summer, winter, or the equinox. Mice housed at a winter photoperiod exhibited an increase in the amplitude of rhythmic lipid metabolism and a modest reduction in fat mass and liver triglyceride content. Comparing melatonin-proficient and -deficient mice, the effect of seasonal light on energy metabolism was largely driven by differences in the rhythmicity of food intake and not melatonin. Together, these data indicate that seasonal light impacts energy metabolism by modulating the timing of eating.

3.
Proc Natl Acad Sci U S A ; 120(8): e2218510120, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36780527

RESUMEN

The circadian clock is a cell-autonomous transcription-translation feedback mechanism that anticipates and adapts physiology and behavior to different phases of the day. A variety of factors including hormones, temperature, food-intake, and exercise can act on tissue-specific peripheral clocks to alter the expression of genes that influence metabolism, all in a time-of-day dependent manner. The aim of this study was to elucidate the effects of exercise timing on adipose tissue metabolism. We performed RNA sequencing on inguinal adipose tissue of mice immediately following maximal exercise or sham treatment at the early rest or early active phase. Only during the early active phase did exercise elicit an immediate increase in serum nonesterified fatty acids. Furthermore, early active phase exercise increased expression of markers of thermogenesis and mitochondrial proliferation in inguinal adipose tissue. In vitro, synchronized 3T3-L1 adipocytes showed a timing-dependent difference in Adrb2 expression, as well as a greater lipolytic activity. Thus, the response of adipose tissue to exercise is time-of-day sensitive and may be partly driven by the circadian clock. To determine the influence of feeding state on the time-of-day response to exercise, we replicated the experiment in 10-h-fasted early rest phase mice to mimic the early active phase metabolic status. A 10-h fast led to a similar lipolytic response as observed after active phase exercise but did not replicate the transcriptomic response, suggesting that the observed changes in gene expression are not driven by feeding status. In conclusion, acute exercise elicits timing-specific effects on adipose tissue to maintain metabolic homeostasis.


Asunto(s)
Tejido Adiposo , Relojes Circadianos , Condicionamiento Físico Animal , Animales , Ratones , Adipocitos , Tejido Adiposo/metabolismo , Relojes Circadianos/genética , Ritmo Circadiano/fisiología , Termogénesis , Condicionamiento Físico Animal/fisiología , Células 3T3-L1
4.
Nat Commun ; 11(1): 5142, 2020 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-33033267

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Nat Commun ; 11(1): 4643, 2020 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-32938935

RESUMEN

Time-restricted feeding (TRF) improves metabolism independent of dietary macronutrient composition or energy restriction. To elucidate mechanisms underpinning the effects of short-term TRF, we investigated skeletal muscle and serum metabolic and transcriptomic profiles from 11 men with overweight/obesity after TRF (8 h day-1) and extended feeding (EXF, 15 h day-1) in a randomised cross-over design (trial registration: ACTRN12617000165381). Here we show that muscle core clock gene expression was similar after both interventions. TRF increases the amplitude of oscillating muscle transcripts, but not muscle or serum metabolites. In muscle, TRF induces rhythmicity of several amino acid transporter genes and metabolites. In serum, lipids are the largest class of periodic metabolites, while the majority of phase-shifted metabolites are amino acid related. In conclusion, short-term TRF in overweight men affects the rhythmicity of serum and muscle metabolites and regulates the rhythmicity of genes controlling amino acid transport, without perturbing core clock gene expression.


Asunto(s)
Aminoácidos/sangre , Ritmo Circadiano/genética , Ayuno , Lípidos/sangre , Músculo Esquelético/metabolismo , Adulto , Relojes Circadianos/genética , Estudios Cruzados , Expresión Génica , Humanos , Metabolismo de los Lípidos , Masculino , Músculo Esquelético/fisiología , Sobrepeso/dietoterapia , Sobrepeso/metabolismo
6.
Physiol Rep ; 7(16): e14218, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31456346

RESUMEN

Oxidative stress promotes protein degradation and apoptosis in skeletal muscle undergoing atrophy. We aimed to determine whether spinal cord injury leads to changes in oxidative stress, antioxidant capacity, and apoptotic signaling in human skeletal muscle during the first year after spinal cord injury. Vastus lateralis biopsies were obtained from seven individuals 1, 3, and 12 months after spinal cord injury and from seven able-bodied controls. Protein content of enzymes involved in reactive oxygen species production and detoxification, and apoptotic signaling were analyzed by western blot. Protein carbonylation and 4-hydroxynonenal protein adducts were measured as markers of oxidative damage. Glutathione content was determined fluorometrically. Protein content of NADPH oxidase 2, xanthine oxidase, and pro-caspase-3 was increased at 1 and 3 months after spinal cord injury compared to able-bodied controls. Furthermore, total and reduced glutathione content was increased at 1 and 3 months after spinal cord injury. Conversely, mitochondrial complexes and superoxide dismutase 2 protein content were decreased 12 months after spinal cord injury compared to able-bodied controls. In conclusion, we provide indirect evidence of increased reactive oxygen species production and increased apoptotic signaling at 1 and 3 months after spinal cord injury. Concomitant increases in glutathione antioxidant defences may reflect adaptations poised to maintain redox homeostasis in skeletal muscle following spinal cord injury.


Asunto(s)
Antioxidantes/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Estrés Oxidativo/fisiología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Adulto , Apoptosis/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Especies Reactivas de Oxígeno/metabolismo
7.
Mol Metab ; 20: 79-88, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30502001

RESUMEN

OBJECTIVE: Forkhead box class O (FOXO) transcription factors regulate whole body energy metabolism, skeletal muscle mass, and substrate switching. FOXO1 and FOXO3 are highly abundant transcription factors, but their precise role in skeletal muscle metabolism has not been fully elucidated. METHODS: To elucidate the role of FOXO in skeletal muscle, dominant negative (dn) constructs for FOXO1 (FOXO1dn) or FOXO3 (FOXO3dn) were transfected by electroporation into mouse tibialis anterior muscle and glucose uptake, signal transduction, and gene expression profiles were assessed after an oral glucose tolerance test. Results were compared against contralateral control transfected muscle. RESULTS: FOXO1dn and FOXO3dn attenuated glucose uptake (35%, p < 0.01 and 20%, p < 0.05), GLUT4 protein (40%, p < 0.05 and 10%, p < 0.05), and subunits of the oxidative phosphorylation cascade. Intramuscular glycogen content was decreased (20%, p < 0.05) by FOXO3dn, but not FOXO1dn. Transcriptomic analysis revealed major pathways affected by FOXO1dn or FOXO3dn revolve around metabolism and inflammation. FOXO1dn increased Akt protein (140%, p < 0.001), p-AktSer473 (720%, p < 0.05) and p-AktThr308 (570%, p < 0.01), whereas FOXO3dn was without effect. FOXO1dn and FOXO3dn increased mTOR protein content (170% and 190%, p < 0.05), and p-p70S6KThr389 (420%, p < 0.01 and 300%, p < 0.01), while p-mTORSer2448 (500%, p < 0.01), was only increased by FOXO1dn. Chemokines and immune cell markers were robustly upregulated in skeletal muscle following the FOXOdn transfections, but not after control transfection. CONCLUSIONS: FOXO1 and FOXO3 regulate glucose metabolism and markers of inflammation in skeletal muscle, implicating transcriptional control governing "immunometabolic" dynamics.


Asunto(s)
Quimiocinas/metabolismo , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O3/metabolismo , Glucosa/metabolismo , Músculo Esquelético/metabolismo , Animales , Quimiocinas/genética , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O3/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
8.
Am J Physiol Endocrinol Metab ; 316(2): E178-E185, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30481042

RESUMEN

Diet intervention in obese adults is the first strategy to induce weight loss and improve insulin sensitivity. We hypothesized that improvements in insulin sensitivity after weight loss from a short-term dietary intervention tracks with alterations in expression of metabolic genes and abundance of specific lipid species. Eight obese, insulin-resistant, nondiabetic adults were recruited to participate in a 3-wk low-calorie diet intervention cohort study (1,000 kcal/day). Fasting blood samples and vastus lateralis skeletal muscle biopsies were obtained before and after the dietary intervention. Clinical chemistry and measures of insulin sensitivity were determined. Unbiased microarray gene expression and targeted lipidomic analysis of skeletal muscle was performed. Body weight was reduced, insulin sensitivity [measured by homeostatic model assessment of insulin resistance, (HOMA-IR)] was enhanced, and serum insulin concentration and blood lipid (triglyceride, cholesterol, LDL, and HDL) levels were improved after dietary intervention. Gene set enrichment analysis of skeletal muscle revealed that biosynthesis of unsaturated fatty acid was among the most enriched pathways identified after dietary intervention. mRNA expression of PDK4 and MLYCD increased, while SCD1 decreased in skeletal muscle after dietary intervention. Dietary intervention altered the intramuscular lipid profile of skeletal muscle, with changes in content of phosphatidylcholine and triglyceride species among the pronounced. Short-term diet intervention and weight loss in obese adults alters metabolic gene expression and reduces specific phosphatidylcholine and triglyceride species in skeletal muscle, concomitant with improvements in clinical outcomes and enhanced insulin sensitivity.


Asunto(s)
Restricción Calórica , Resistencia a la Insulina , Obesidad/dietoterapia , Músculo Cuádriceps/metabolismo , Adulto , Carboxiliasas/genética , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Proteínas de Unión al ADN/genética , Proteínas de Transporte de Ácidos Grasos/genética , Femenino , Expresión Génica , Humanos , Insulina/sangre , Masculino , Proteínas Mitocondriales/genética , Músculo Esquelético/metabolismo , Obesidad/genética , Obesidad/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Fosfatidilcolinas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , ARN Mensajero/metabolismo , Estearoil-CoA Desaturasa/genética , Factores de Tiempo , Factores de Transcripción/genética , Triglicéridos/sangre , Triglicéridos/metabolismo
9.
Am J Physiol Endocrinol Metab ; 315(5): E995-E1004, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29688769

RESUMEN

Adenosine monophosphate-activated protein kinase (AMPK) controls glucose and lipid metabolism and modulates inflammatory responses to maintain metabolic and inflammatory homeostasis during low cellular energy levels. The AMPK activator 5-aminoimidazole-4-carboxamide-1-ß-4-ribofuranoside (AICAR) interferes with inflammatory pathways in skeletal muscle, but the mechanisms are undefined. We hypothesized that AMPK activation reduces cytokine mRNA levels by blocking transcription through one or several transcription factors. Three skeletal muscle models were used to study AMPK effects on cytokine mRNA: human skeletal muscle strips obtained from healthy men incubated in vitro, primary human muscle cells, and rat L6 cells. In all three skeletal muscle systems, AICAR acutely reduced cytokine mRNA levels. In L6 myotubes treated with the transcriptional blocker actinomycin D, AICAR addition did not further reduce Il6 or leukemia inhibitory factor ( Lif) mRNA, suggesting that AICAR modulates cytokine expression through regulating transcription rather than mRNA stability. A cross-species bioinformatic approach identified novel transcription factors that may regulate LIF and IL6 mRNA. The involvement of these transcription factors was studied after targeted gene-silencing by siRNA. siRNA silencing of the transcription factors nuclear transcription factor Y subunit c ( Nfyc), specificity protein 1 ( Sp1), and zinc finger and BTB domain containing 14 ( Zbtb14), or AMPK α1/α2 subunits, increased constitutive levels of Il6 and Lif. Our results identify novel candidates in the regulation of skeletal muscle cytokine expression and identify AMPK, Nfyc, Sp1, and Zbtb14 as novel regulators of immunometabolic signals from skeletal muscle.


Asunto(s)
Adenilato Quinasa/metabolismo , Regulación de la Expresión Génica , Interleucina-6/metabolismo , Factor Inhibidor de Leucemia/metabolismo , Músculo Esquelético/metabolismo , Factores de Transcripción/metabolismo , Adenilato Quinasa/genética , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Factor de Unión a CCAAT/genética , Factor de Unión a CCAAT/metabolismo , Humanos , Hipoglucemiantes/farmacología , Interleucina-6/genética , Factor Inhibidor de Leucemia/genética , Masculino , Persona de Mediana Edad , Músculo Esquelético/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ribonucleótidos/farmacología , Factor de Transcripción Sp1/genética , Factor de Transcripción Sp1/metabolismo , Factores de Transcripción/genética
10.
J Physiol ; 595(14): 4611-4630, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28436536

RESUMEN

KEY POINTS: Small transmembrane proteins such as FXYDs, which interact with Na+ ,K+ -ATPase, and the micropeptides that interact with sarco/endoplasmic reticulum Ca2+ -ATPase play fundamental roles in regulation of ion transport in vertebrates. Uncertain evolutionary origins and phylogenetic relationships among these regulators of ion transport have led to inconsistencies in their classification across vertebrate species, thus hampering comparative studies of their functions. We discovered the first FXYD homologue in sea lamprey, a basal jawless vertebrate, which suggests small transmembrane regulators of ion transport emerged early in the vertebrate lineage. We also identified 13 gene subfamilies of FXYDs and propose a revised, phylogeny-based FXYD classification that is consistent across vertebrate species. These findings provide an improved framework for investigating physiological and pathophysiological functions of small transmembrane regulators of ion transport. ABSTRACT: Small transmembrane proteins are important for regulation of cellular ion transport. The most prominent among these are members of the FXYD family (FXYD1-12), which regulate Na+ ,K+ -ATPase, and phospholamban, sarcolipin, myoregulin and DWORF, which regulate the sarco/endoplasmic reticulum Ca2+ -ATPase (SERCA). FXYDs and regulators of SERCA are present in fishes, as well as terrestrial vertebrates; however, their evolutionary origins and phylogenetic relationships are obscure, thus hampering comparative physiological studies. Here we discovered that sea lamprey (Petromyzon marinus), a representative of extant jawless vertebrates (Cyclostomata), expresses an FXYD homologue, which strongly suggests that FXYDs predate the emergence of fishes and other jawed vertebrates (Gnathostomata). Using a combination of sequence-based phylogenetic analysis and conservation of local chromosome context, we determined that FXYDs markedly diversified in the lineages leading to cartilaginous fishes (Chondrichthyes) and bony vertebrates (Euteleostomi). Diversification of SERCA regulators was much less extensive, indicating they operate under different evolutionary constraints. Finally, we found that FXYDs in extant vertebrates can be classified into 13 gene subfamilies, which do not always correspond to the established FXYD classification. We therefore propose a revised classification that is based on evolutionary history of FXYDs and that is consistent across vertebrate species. Collectively, our findings provide an improved framework for investigating the function of ion transport in health and disease.


Asunto(s)
Transporte Iónico/genética , Lampreas/genética , Proteínas de la Membrana/genética , Animales , Evolución Biológica
11.
Diabetes ; 66(7): 1807-1818, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28404597

RESUMEN

MicroRNAs have emerged as important regulators of glucose and lipid metabolism in several tissues; however, their role in skeletal muscle remains poorly characterized. We determined the effects of the miR-29 family on glucose metabolism, lipid metabolism, and insulin responsiveness in skeletal muscle. We provide evidence that miR-29a and miR-29c are increased in skeletal muscle from patients with type 2 diabetes and are decreased following endurance training in healthy young men and in rats. In primary human skeletal muscle cells, inhibition and overexpression strategies demonstrate that miR-29a and miR-29c regulate glucose uptake and insulin-stimulated glucose metabolism. We identified that miR-29 overexpression attenuates insulin signaling and expression of insulin receptor substrate 1 and phosphoinositide 3-kinase. Moreover, miR-29 overexpression reduces hexokinase 2 expression and activity. Conversely, overexpression of miR-29 by electroporation of mouse tibialis anterior muscle decreased glucose uptake and glycogen content in vivo, concomitant with decreased abundance of GLUT4. We also provide evidence that fatty acid oxidation is negatively regulated by miR-29 overexpression, potentially through the regulation of peroxisome proliferator-activated receptor γ coactivator-1α expression. Collectively, we reveal that miR-29 acts as an important regulator of insulin-stimulated glucose metabolism and lipid oxidation, with relevance to human physiology and type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Glucosa/metabolismo , Metabolismo de los Lípidos/genética , MicroARNs/genética , Músculo Esquelético/metabolismo , Animales , Diabetes Mellitus Tipo 2/metabolismo , Ejercicio Físico , Ácidos Grasos/metabolismo , Femenino , Perfilación de la Expresión Génica , Transportador de Glucosa de Tipo 4/metabolismo , Humanos , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Resistencia a la Insulina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Oxidación-Reducción , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Fosfatidilinositol 3-Quinasa/genética , Fosfatidilinositol 3-Quinasa/metabolismo , Condicionamiento Físico Animal , Resistencia Física , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa
12.
Am J Physiol Endocrinol Metab ; 309(4): E388-97, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26105008

RESUMEN

-Reactive oxygen species (ROS) produced in skeletal muscle may play a role in potentiating the beneficial responses to exercise; however, the effects of exercise-induced ROS on insulin action and protein signaling in humans has not been fully elucidated. Seven healthy, recreationally active participants volunteered for this double-blind, randomized, repeated-measures crossover study. Exercise was undertaken with infusion of saline (CON) or the antioxidant N-acetylcysteine (NAC) to attenuate ROS. Participants performed two 1-h cycling exercise sessions 7-14 days apart, 55 min at 65% V̇o2peak plus 5 min at 85%V̇o2peak, followed 3 h later by a 2-h hyperinsulinemic euglycemic clamp (40 mIU·min(-1)·m(2)) to determine insulin sensitivity. Four muscle biopsies were taken on each trial day, at baseline before NAC infusion (BASE), after exercise (EX), after 3-h recovery (REC), and post-insulin clamp (PI). Exercise, ROS, and insulin action on protein phosphorylation were evaluated with immunoblotting. NAC tended to decrease postexercise markers of the ROS/protein carbonylation ratio by -13.5% (P = 0.08) and increase the GSH/GSSG ratio twofold vs. CON (P < 0.05). Insulin sensitivity was reduced (-5.9%, P < 0.05) by NAC compared with CON without decreased phosphorylation of Akt or AS160. Whereas p-mTOR was not significantly decreased by NAC after EX or REC, phosphorylation of the downstream protein synthesis target kinase p70S6K was blunted by 48% at PI with NAC compared with CON (P < 0.05). We conclude that NAC infusion attenuated muscle ROS and postexercise insulin sensitivity independent of Akt signaling. ROS also played a role in normal p70S6K phosphorylation in response to insulin stimulation in human skeletal muscle.


Asunto(s)
Acetilcisteína/farmacología , Ejercicio Físico/fisiología , Resistencia a la Insulina , Insulina/metabolismo , Músculo Esquelético/efectos de los fármacos , Acetilcisteína/administración & dosificación , Adulto , Estudios Cruzados , Método Doble Ciego , Prueba de Esfuerzo , Femenino , Técnica de Clampeo de la Glucosa , Humanos , Infusiones Intravenosas , Masculino , Contracción Muscular/efectos de los fármacos , Músculo Esquelético/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Adulto Joven
13.
Am J Physiol Endocrinol Metab ; 305(9): E1071-80, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24022865

RESUMEN

AMP-activated protein kinase (AMPK) is a pivotal regulator of energy homeostasis. Although downstream targets of AMPK are widely characterized, the physiological factors governing isoform expression of this protein kinase are largely unknown. Nerve/contractile activity has a major impact on the metabolic phenotype of skeletal muscle, therefore likely to influence AMPK isoform expression. Spinal cord injury represents an extreme form of physical inactivity, with concomitant changes in skeletal muscle metabolism. We assessed the influence of longstanding and recent spinal cord injury on protein abundance of AMPK isoforms in human skeletal muscle. We also determined muscle fiber type as a marker of glycolytic or oxidative metabolism. In subjects with longstanding complete injury, protein abundance of the AMPKγ3 subunit, as well as myosin heavy chain (MHC) IIa and IIx, were increased, whereas abundance of the AMPKγ1 subunit and MHC I were decreased. Similarly, abundance of AMPKγ3 and MHC IIa proteins were increased, whereas AMPKα2, -ß1, and -γ1 subunits and MHC I abundance was decreased during the first year following injury, reflecting a more glycolytic phenotype of the skeletal muscle. However, in incomplete cervical lesions, partial recovery of muscle function attenuated the changes in the isoform profile of AMPK and MHC. Furthermore, exercise training (electrically stimulated leg cycling) partly normalized mRNA expression of AMPK isoforms. Thus, physical activity affects the relative expression of AMPK isoforms. In conclusion, skeletal muscle abundance of AMPK isoforms is related to physical activity and/or muscle fiber type. Thus, physical/neuromuscular activity is an important determinant of isoform abundance of AMPK and MCH. This further underscores the need for physical activity as part of a treatment regimen after spinal cord injury to maintain skeletal muscle metabolism.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Músculo Esquelético/enzimología , Traumatismos de la Médula Espinal/enzimología , Adolescente , Adulto , Ciclismo/fisiología , Biopsia , Western Blotting , Índice de Masa Corporal , Estimulación Eléctrica , Femenino , Glucólisis , Humanos , Isoenzimas/metabolismo , Masculino , Trastornos Musculares Atróficos , Cadenas Pesadas de Miosina/metabolismo , ARN/biosíntesis , ARN/aislamiento & purificación , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA