RESUMEN
3-methyl-4-nitrophenol (PNMC), a well-known constituent of diesel exhaust particles and degradation products of insecticide fenitrothion, is a widely distributed environmental contaminant. PNMC is toxic to the female reproductive system; however, how it affects meiosis progression in oocytes is unknown. In this study, in vitro maturation of mouse oocytes was applied to investigate the deleterious effects of PNMC. We found that exposure to PNMC significantly compromised oocyte maturation. PNMC disturbed the spindle stability; specifically, it decreased the spindle density and increased the spindle length. The weakened spindle pole location of microtubule-severing enzyme Fignl1 may result in a defective spindle apparatus in PNMC-exposed oocytes. PNMC exposure induced significant mitochondrial dysfunction, including mitochondria distribution, ATP production, mitochondrial membrane potential, and ROS accumulation. The mRNA levels of the mitochondria-related genes were also significantly impaired. Finally, the above-mentioned alterations triggered early apoptosis in the oocytes. In conclusion, PNMC exposure affected oocyte maturation and quality through the regulation of spindle stability and mitochondrial function.
Asunto(s)
Enfermedades Mitocondriales , Oocitos , Femenino , Animales , Ratones , Cresoles , ADN Mitocondrial , MeiosisRESUMEN
The ten-eleven translocation (TET) enzyme family, which includes TET1/2/3, participates in active DNA demethylation in the eukaryotic genome; moreover, TET1/2/3 are functionally redundant in mice embryos. However, the combined effect of TET1/2/3 triple-gene knockdown or knockout on the porcine oocytes or embryos is still unclear. In this study, using Bobcat339, a specific small-molecule inhibitor of the TET family, we explored the effects of TET enzymes on oocyte maturation and early embryogenesis in pigs. Our results revealed that Bobcat339 treatment blocked porcine oocyte maturation and triggered early apoptosis. Furthermore, in the Bobcat339-treated oocytes, spindle architecture and chromosome alignment were disrupted, probably due to the huge loss of 5-hydroxymethylcytosine (5hmC)and concurrent increase in 5-methylcytosine (5mC). After Bobcat339 treatment, early parthenogenetic embryos exhibited abnormal 5mC and 5hmC levels, which resulted in compromised cleavage and blastocyst rate. The mRNA levels of EIF1A and DPPA2 (ZGA marker genes) were significantly decreased, which may explain why the embryos were arrested at the 4-cell stage after Bobcat339 treatment. In addition, the mRNA levels of pluripotency-related genes OCT4 and NANOG were declined after Bobcat339 treatment. RNA sequencing analysis revealed differentially expressed genes in Bobcat339-treated embryos at the 4-cell stage, which were significantly enriched in cell proliferation, cell component related to mitochondrion, and cell adhesion molecule binding. Our results indicated that TET proteins are essential for porcine oocyte maturation and early embryogenesis, and they act by mediating 5mC/5hmC levels and gene transcription.
RESUMEN
Active neural stem cells (aNSCs) and quiescent neural stem cells (qNSCs) are two distinct subpopulations found in the adult hippocampal dentate gyrus (DG). However, to date, no cell surface marker has been established to identify and profile qNSCs in the adult hippocampus. Here, we identified expression of vascular cell adhesion molecule 1 (VCAM1) on the cell surface of NSCs, through which we identified a previously unrecognized subpopulation of NSCs in the adult mouse DG. Interestingly, most VCAM1-expressing NSCs were largely quiescent. By injecting virus into Ai14 reporter mice to conduct lineage tracing in the adult DG, we confirmed that VCAM1-expressing cells were multipotent and capable of generating neurons and astrocytes. Furthermore, depletion of Vcam1 during the embryonic or adult stage impaired spatial learning and memory in mice, accompanied by a reduced number of radial glial-like cells and proliferating NSCs in the subgranular zone of Vcam1 knockout mice.