Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 508
Filtrar
1.
Phytopathology ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38857059

RESUMEN

Mixtures of fungicides with different modes of action are commonly used as disease and resistance management tools, but little is known of mixtures of natural and synthetic products. In this study, mixtures of metabolites from the rhizobacterium Pseudomonas chlororaphis strain ASF009 formulated as Howler EVO with below label rates (50 µg/ml) of conventional sterol demethylation inhibitor (DMI) fungicides were investigated for control of anthracnose of cherry (Prunus avium) caused by Colletotrichum siamense. Howler mixed with metconazole or propiconazole synergistically reduced disease severity through lesion growth. Realtime PCR showed that difenoconazole, flutriafol, metconazole, and propiconazole induced the expression of DMI target genes CsCYP51A and CsCYP51B in C. siamense. The addition of Howler completely suppressed the DMI fungicide-induced expression of both CYP51 genes. We hypothesize that the downregulation of DMI fungicide-induced expression of the DMI target genes may, at least in part, explain the synergism observed in detached fruit assays.

2.
Radiother Oncol ; 197: 110367, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38834152

RESUMEN

BACKGROUND: The number of metastatic lymph nodes (MLNs) is crucial for the survival of nasopharyngeal carcinoma (NPC), but manual counting is laborious. This study aims to explore the feasibility and prognostic value of automatic MLNs segmentation and counting. METHODS: We retrospectively enrolled 980 newly diagnosed patients in the primary cohort and 224 patients from two external cohorts. We utilized the nnUnet model for automatic MLNs segmentation on multimodal magnetic resonance imaging. MLNs counting methods, including manual delineation-assisted counting (MDAC) and fully automatic lymph node counting system (AMLNC), were compared with manual evaluation (Gold standard). RESULTS: In the internal validation group, the MLNs segmentation results showed acceptable agreement with manual delineation, with a mean Dice coefficient of 0.771. The consistency among three counting methods was as follows 0.778 (Gold vs. AMLNC), 0.638 (Gold vs. MDAC), and 0.739 (AMLNC vs. MDAC). MLNs numbers were categorized into three-category variable (1-4, 5-9, > 9) and two-category variable (<4, ≥ 4) based on the gold standard and AMLNC. These categorical variables demonstrated acceptable discriminating abilities for 5-year overall survival (OS), progression-free, and distant metastasis-free survival. Compared with base prediction model, the model incorporating two-category AMLNC-counting numbers showed improved C-indexes for 5-year OS prediction (0.658 vs. 0.675, P = 0.045). All results have been successfully validated in the external cohort. CONCLUSIONS: The AMLNC system offers a time- and labor-saving approach for fully automatic MLNs segmentation and counting in NPC. MLNs counting using AMLNC demonstrated non-inferior performance in survival discrimination compared to manual detection.

3.
Talanta ; 277: 126341, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38823329

RESUMEN

A highly sensitive ultra-small ratiometric fluorescence nanosphere probe was successfully manufactured to detect Sunset Yellow (SY). The probe, CMCS@N, S-CDs/Rh6G, was formed through the encapsulation of N, S-CDs and Rh6G within carboxymethyl chitosan (CMCS) through in situ cross-linking. Remarkably, our nanosphere probe had an average grain diameter of 6.80 nm and exhibited excellent dispersibility without the need for additional solvents. The probe exhibited a strong linear relationship with SY concentration in the range of 0.26-100 µM, with a low detection limit of 0.078 µM. Furthermore, SY demonstrated strong fluorescence quenching capability on our nanosphere probe, with the fluorescence quenching mechanism involving a combined effects of inner filter effect (IFE) and static quenching. Notably, our nanosphere probe retained the bacteriostatic properties of CMCS, with a substantial bacteriostasis rate of 77.58 %, introducing novel potential applications.

4.
Nat Commun ; 15(1): 4393, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782937

RESUMEN

Whether intestinal Leucine-rich repeat containing G-protein-coupled receptor 4 (LGR4) impacts nutrition absorption and energy homeostasis remains unknown. Here, we report that deficiency of Lgr4 (Lgr4iKO) in intestinal epithelium decreased the proportion of enterocytes selective for long-chain fatty acid absorption, leading to reduction in lipid absorption and subsequent improvement in lipid and glucose metabolism. Single-cell RNA sequencing demonstrates the heterogeneity of absorptive enterocytes, with a decrease in enterocytes selective for long-chain fatty acid-absorption and an increase in enterocytes selective for carbohydrate absorption in Lgr4iKO mice. Activation of Notch signaling and concurrent inhibition of Wnt signaling are observed in the transgenes. Associated with these alterations is the substantial reduction in lipid absorption. Decrement in lipid absorption renders Lgr4iKO mice resistant to high fat diet-induced obesity relevant to wild type littermates. Our study thus suggests that targeting intestinal LGR4 is a potential strategy for the intervention of obesity and liver steatosis.


Asunto(s)
Dieta Alta en Grasa , Enterocitos , Mucosa Intestinal , Metabolismo de los Lípidos , Obesidad , Receptores Acoplados a Proteínas G , Animales , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Enterocitos/metabolismo , Ratones , Mucosa Intestinal/metabolismo , Obesidad/metabolismo , Obesidad/genética , Ratones Noqueados , Masculino , Absorción Intestinal , Ratones Endogámicos C57BL , Vía de Señalización Wnt , Hígado Graso/metabolismo , Hígado Graso/genética , Ácidos Grasos/metabolismo , Receptores Notch/metabolismo , Glucosa/metabolismo
5.
Heliyon ; 10(10): e31557, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38803981

RESUMEN

Accurate prediction of the prognosis of nasopharyngeal carcinoma (NPC) is important for treatment. Lymph nodes metastasis is an important predictor for distant failure and regional recurrence in patients with NPC. Traditionally, subjective radiological evaluation increases concerns regarding the accuracy and consistency of predictions. Radiomics is an objective and quantitative evaluation algorithm for medical images. This retrospective analysis was conducted based on the data of 729 patients newly diagnosed with NPC without distant metastases to evaluate the performance of radiomics pretreatment using magnetic resonance imaging (MRI)-determined metastatic lymph nodes models to predict NPC prognosis with three delineation methods. Radiomics features were extracted from all lymph nodes (ALN), largest lymph node (LLN), and largest slice of the largest lymph node (LSLN) to generate three radiomics signatures. The radiomics signatures, clinical model, and radiomics-clinic merged models were developed in training cohort for predicting overall survival (OS). The results showed that LSLN signature with clinical factors predicted OS with high accuracy and robustness using pretreatment MR-determined metastatic lymph nodes (C-index [95 % confidence interval]: 0.762[0.760-0.763]), providing a new tool for treatment planning in NPC.

6.
Respir Res ; 25(1): 226, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811960

RESUMEN

BACKGROUND: This study aimed to explore the incidence of occult lymph node metastasis (OLM) in clinical T1 - 2N0M0 (cT1 - 2N0M0) small cell lung cancer (SCLC) patients and develop machine learning prediction models using preoperative intratumoral and peritumoral contrast-enhanced CT-based radiomic data. METHODS: By conducting a retrospective analysis involving 242 eligible patients from 4 centeres, we determined the incidence of OLM in cT1 - 2N0M0 SCLC patients. For each lesion, two ROIs were defined using the gross tumour volume (GTV) and peritumoral volume 15 mm around the tumour (PTV). By extracting a comprehensive set of 1595 enhanced CT-based radiomic features individually from the GTV and PTV, five models were constucted and we rigorously evaluated the model performance using various metrics, including the area under the curve (AUC), accuracy, sensitivity, specificity, calibration curve, and decision curve analysis (DCA). For enhanced clinical applicability, we formulated a nomogram that integrates clinical parameters and the rad_score (GTV and PTV). RESULTS: The initial investigation revealed a 33.9% OLM positivity rate in cT1 - 2N0M0 SCLC patients. Our combined model, which incorporates three radiomic features from the GTV and PTV, along with two clinical parameters (smoking status and shape), exhibited robust predictive capabilities. With a peak AUC value of 0.772 in the external validation cohort, the model outperformed the alternative models. The nomogram significantly enhanced diagnostic precision for radiologists and added substantial value to the clinical decision-making process for cT1 - 2N0M0 SCLC patients. CONCLUSIONS: The incidence of OLM in SCLC patients surpassed that in non-small cell lung cancer patients. The combined model demonstrated a notable generalization effect, effectively distinguishing between positive and negative OLMs in a noninvasive manner, thereby guiding individualized clinical decisions for patients with cT1 - 2N0M0 SCLC.


Asunto(s)
Neoplasias Pulmonares , Metástasis Linfática , Carcinoma Pulmonar de Células Pequeñas , Tomografía Computarizada por Rayos X , Humanos , Neoplasias Pulmonares/epidemiología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/diagnóstico por imagen , Carcinoma Pulmonar de Células Pequeñas/diagnóstico por imagen , Carcinoma Pulmonar de Células Pequeñas/epidemiología , Carcinoma Pulmonar de Células Pequeñas/patología , Masculino , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Anciano , Metástasis Linfática/diagnóstico por imagen , Incidencia , Tomografía Computarizada por Rayos X/métodos , Valor Predictivo de las Pruebas , Medios de Contraste , Estadificación de Neoplasias/métodos , Adulto , Ganglios Linfáticos/patología , Ganglios Linfáticos/diagnóstico por imagen , Anciano de 80 o más Años , Radiómica
7.
Biochem Biophys Res Commun ; 719: 150127, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38761634

RESUMEN

Alzheimer's disease is characterized by abnormal ß-amyloid and tau accumulation, mitochondrial dysfunction, oxidative stress, and synaptic dysfunction. Here, we aimed to assess the mechanisms and signalling pathways in the neuroprotective effect of gastrodin, a phenolic glycoside, on murine neuroblastoma N2a cells expressing human Swedish mutant APP (N2a/APP). We found that gastrodin increased the levels of presynaptic-SNAP, synaptophysin, and postsynaptic-PSD95 and reduced phospho-tau Ser396, APP and Aß1-42 levels in N2a/APP cells. Gastrodin treatment reduced reactive oxygen species generation, lipid peroxidation, mitochondrial fragmentation and DNA oxidation; restored mitochondrial membrane potential and intracellular ATP production. Upregulated phospho-GSK-3ß and reduced phospho-ERK and phospho-JNK were involved in the protective effect of gastrodin. In conclusion, we demonstrated the neuroprotective effect of gastrodin in the N2a/APP cell line by ameliorating the impairment on synaptic and mitochondrial function, reducing tau phosphorylation, Aß1-42 levels as well as reactive oxygen species generation. These results provide new mechanistic insights into the potential effect of gastrodin in the treatment of Alzheimer's disease.


Asunto(s)
Alcoholes Bencílicos , Glucósidos , Mitocondrias , Fármacos Neuroprotectores , Estrés Oxidativo , Especies Reactivas de Oxígeno , Sinapsis , Glucósidos/farmacología , Alcoholes Bencílicos/farmacología , Estrés Oxidativo/efectos de los fármacos , Animales , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fármacos Neuroprotectores/farmacología , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Proteínas tau/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Fragmentos de Péptidos
8.
Artículo en Inglés | MEDLINE | ID: mdl-38717067

RESUMEN

Background: Rodent is a reservoir of various zoonotic pathogens. Wanzhou section of the Three Gorges reservoir region (TGRR) is a superior habitat for rodents, and the situation of rodent-borne zoonotic pathogens in this region has not been surveyed in recent years. Materials and Methods: Rodents were night trapped with mousecage or mousetrap in urban and surrounding towns' indoor or outdoor areas of the Wanzhou section of the TGRR, and nucleic acid was extracted from their lung or a mixture of liver, spleen, and kidney. Commercialized qPCR kits for pathogenic Leptospira spp., Rickettsia typhi, Anaplasma phagocytophilum, Bartonella spp., Orientia tsutsugamushi, and Francisella tularensis and qRT-PCR kits for hantavirus (HV), and severe fever with thrombocytopenia syndrome virus (SFTSV) were used for the detection of associated pathogens in collected rodents. Results: From 2021 to 2023, 604 rodents belonging to 10 species were collected. HV and pathogenic L. spp. were detected positive, with infection rates of 0.66% (4/604) and 1.32% (8/604), respectively. B. spp. were detected positive with an infection rate of 4.73% (19/402) in the rodents trapped in 2022 and 2023. Other five pathogens were all detected negative. Conclusion: This study showed that the Wanzhou section of the TGRR had HV, pathogenic L. spp., and B. spp. co-circulation in rodents. Hence, more attention should be paid to the prevention and control of associated rodent-borne diseases.

9.
Plant Dis ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720540

RESUMEN

Passion fruit (Passilora edulis), known as the "king of fruit juices", is popular in southern China (Yuan et al. 2019). Stem base rot is a devastating disease of passion fruit commonly caused by several Fusarium spp. (Zakaria, 2022). In July 2022, typical symptoms of stem base rot were observed in a poorly managed "Qinmi No. 9" Golden passion fruit orchard in Jingxi (23°13'10"N, 106°5'23"E). The disease incidence had reached 40% (n=200) in the survey. Symptoms included ulceration and mutilation at the stem base, making the plants prone to breakage when pulled, wilting and drooping leaves above ground, and severe cases leading to the entire plant withering and dying. Fourteen plants with obvious symptoms were collected. Thin sections of plant tissue were cut from junction of sickness and health of stem, sterilized with ethanol and sodium hypochlorite, and placed on PDA medium at 28°C. Sixty fungal strains were obtained, 90% of which was identified as Fusarium based on morphology. 80% of Fusarium were F. oxysporum species complex (FOSC), but pathogenicity experiment showed all FOSC were weakly pathogenic. However, two severely pathogenic fungi with similar morphology but distinct from Fusarium were identified from the same plant. The representative strain C11 was selected for further study. C11 demonstrated a rapid growth rate, reaching a 90 mm diameter colony on PDA cultured at 25°C for 7 days. The colony displaced a round, flat shape with an overall light brown front, and cottony gray or light brown mycelium, while the reverse side was dark brown. Conidia production was observed as typically occurred in multiple chains after 14 days culture on OA medium, with round, oval or straight rod-like brown conidia ranging in size from 5.74-23.42×14.67-67.22, featuring 1-8 transverse septa and 0-3 mediastinum (Figure S1). For molecular identification, the internal transcribed spacer (ITS, OR616614), translation elongation factor 1-alpha (TEF, OR633298), alternaria major allergen (Alt a1, OR633294) gene, glyceraldehyde 3-phosphate dehydrogenase (GAPDH, OR633295), RNA polymerase subunit II gene (RPB2, OR633297), 18S Small subunit rDNA (SSU, OR616608) , 28S Large Subunit rDNA (LSU, OR616615), the KOG1058 gene regions (OR633296) and an approximately segment of the anonymous noncoding region (OPA10-2, OR633299) were amplified from C11 (Liu et al. 1999, Li et al. 2023, Andrew et al. 2009), and deposited in GenBank with accession number shown in the brackets. Phylogenetic trees were constructed in MEGA11 after splicing by BioEdit (Figure S3). Combining morphology and molecular analyses, C11 was identified as Alternaria gossypina (Woudenberg et al. 2015). To test the pathogenicity, the base of the seedling stem (20cm in height) of 50 healthy "Tainong No. 1" variety of purple passion fruit, which was more susceptible to stem-base rot, was puncture wound with needles, inoculated with 6 mm diameter colonies of fungi, and then wrapped in wet cotton (Ángel et al. 2018). Ten healthy seedlings inoculated with PDA were used as controls. These plants were cultured in an artificial greenhouse at 30±5℃with 80±5% humidity. After 15 days, the plants inoculated with C11 exhibited symptoms similar to those in the field, whereas the controls remained healthy. A. gossypina was reisolated from the diseased plant stems, with the morphology and GAPDH sequence consistent with the inoculated (Figure S1, S2). This is the first report of passion fruit stem rot caused by A. gossypina. This finding will aid in the prevention and control of stem rot in passion fruit.

10.
Angew Chem Int Ed Engl ; : e202403824, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727541

RESUMEN

Stability is the most pressing challenge hindering the commercialization of perovskite solar cells (PSCs), and previous efforts focused more on enhancing the resistance of PSCs to external stimulus. Here, we found that the indium tin oxide (ITO) will deteriorate the photovoltaic performance of PSCs through positive feedback cycles. Specifically, the perovskite degradation products will cross the electron transport layer  to chemically etch the electrode ITO to generate In3+, which will migrate upwards into the perovskite film. Then, the reaction that corrodes ITO consumes the decomposition products of perovskite and shifts the balance of the perovskite decomposition reaction, further promoting the degradation and thus falling into a positive feedback cycle. Moreover, the In3+ in the perovskite film was found to accumulate at the upper surface, which would lead to n-type doping of perovskite film to form the energy barrier for interface carrier extraction. Subsequently, the chelating molecule ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) was introduced onto ITO to firmly chelate the In3+ and prevent it from migrating upward, thus breaking this internal positive feedback cycle and significantly enhancing the efficiency and stability of PSCs. This work provides new perspectives for understanding the mechanism of photovoltaic performance loss and ionic transport in PSCs.

11.
Front Genet ; 15: 1315677, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725483

RESUMEN

To cope with the damage from oxidative stress caused by hypoxia, mammals have evolved a series of physiological and biochemical traits, including antioxidant ability. Although numerous research studies about the mechanisms of hypoxia evolution have been reported, the molecular mechanisms of antioxidase-related genes in mammals living in different environments are yet to be completely understood. In this study, we constructed a dataset comprising 7 antioxidase-related genes (CAT, SOD1, SOD2, SOD3, GPX1, GPX2, and GPX3) from 43 mammalian species to implement evolutionary analysis. The results showed that six genes (CAT, SOD1, SOD2, SOD3, GPX1, and GPX3) have undergone divergent evolution based on the free-ratio (M1) model. Furthermore, multi-ratio model analyses uncovered the divergent evolution between hypoxic and non-hypoxic lineages, as well as various hypoxic lineages. In addition, the branch-site model identified 9 positively selected branches in 6 genes (CAT, SOD1, SOD2, SOD3, GPX2, and GPX3) that contained 35 positively selected sites, among which 31 positively selected sites were identified in hypoxia-tolerant branches, accounting for 89% of the total number of positively selected sites. Interestingly, 65 parallel/convergent sites were identified in the 7 genes. In summary, antioxidase-related genes are subjected to different selective pressures among hypoxia-tolerant species living in different habitats. This study provides a valuable insight into the molecular evolution of antioxidase-related genes in hypoxia evolution in mammals.

12.
Adv Sci (Weinh) ; : e2309084, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704694

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is a prevalent gastrointestinal cancer characterized by high mortality and an unfavorable prognosis. While combination therapies involving surgery, chemotherapy, and radiation therapy are advancing, targeted therapy for ESCC remains underdeveloped. As a result, the overall five-year survival rate for ESCC is still below 20%. Herein, ESCC-specific DNA aptamers and an innovative aptamer-modified nano-system is introduced for targeted drug and gene delivery to effectively inhibit ESCC. The EA1 ssDNA aptamer, which binds robustly to ESCC cells with high specificity and affinity, is identified using cell-based systematic evolution of ligands by exponential enrichment (cell-SELEX). An EA1-modified nano-system is developed using a natural egg yolk lipid nanovector (EA1-EYLNs-PTX/siEFNA1) that concurrently loads paclitaxel (PTX) and a small interfering RNA of Ephrin A1 (EFNA1). This combination counters ESCC's proliferation, migration, invasion, and lung metastasis. Notably, EFNA1 is overexpressed in ESCC tumors with lung metastasis and has an inverse correlation with ESCC patient prognosis. The EA1-EYLNs-PTX/siEFNA1 nano-system offers effective drug delivery and tumor targeting, resulting in significantly improved therapeutic efficacy against ESCC tumors. These insights suggest that aptamer-modified nano-systems can deliver drugs and genes with superior tumor-targeting, potentially revolutionizing targeted therapy in ESCC.

13.
Skin Res Technol ; 30(4): e13665, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38558448

RESUMEN

Diabetes is a chronic medical condition that may induce complications such as poor wound healing. Stem cell therapies have shown promise in treating diabetic wounds with pre-clinical and clinical studies. However, little bibliometric analysis has been carried out on stem cells in the treatment of diabetic wounds. In this study, we retrieved relevant papers published from January 1, 2003, to December 31, 2023, from Chinese and English databases. CiteSpace software was used to analyze the authors, institutions, and keywords by standard bibliometric indicators. Our analysis findings indicated that publications on stem cells in the treatment of diabetic wounds kept increasing. The most prolific author was Qian Cai (n = 7) and Mohammad Bayat (n = 16) in Chinese and English databases, respectively. Institutions distribution analysis showed that Chinese institutions conducted most publications, and the most prolific institution was the Chinese People's Liberation Army General Hospital (n = 9) and Shahid Beheshti University of Medical Sciences (n = 17) in Chinese and English databases, respectively. The highest centrality keyword in Chinese and English databases was "wound healing" (0.54) and "in vitro" (0.13), respectively. There were 8 and 11 efficient and convincing keyword clusters produced by a log-likelihood ratio in the Chinese and English databases, respectively. The strongest burst keyword was "exosome" (strength 3.57) and "endothelial progenitor cells" (strength 7.87) in the Chinese and English databases, respectively. These findings indicated a direction for future therapies and research on stem cells in the treatment of diabetic wounds.


Asunto(s)
Pueblo Asiatico , Diabetes Mellitus , Pueblos del Este de Asia , Humanos , Bibliometría , Diabetes Mellitus/terapia , Células Madre
14.
J Ovarian Res ; 17(1): 75, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575997

RESUMEN

Umbilical cord-derived mesenchymal stem cell (UCMSC) transplantation has been deeply explored for premature ovarian insufficiency (POI) disease. However, the associated mechanism remains to be researched. To explore whether and how the microRNA 21 (miR-21) functions in POI mice with UCMSCs transplantation, the autoimmune-induced POI mice model was built up, transplanted with or without UCMSCs transfect with the LV-hsa-miR-21-5p/LV-hsa-miR-21-5p-inhibition, with the transfection efficiency analyzed by QRT-PCR. Mice hormone secretion and the anti-Zona pellucida antibody (AZPAb) levels were analyzed, the ovarian morphological changes and folliculogenesis were observed, and the ovarian apoptosis cells were detected to evaluate ovarian function. The expression and localization of the PTEN/Akt/FOXO3a signal pathway-related cytokines were analyzed in mice ovaries.Additionally, the spleen levels of CD8 + CD28-T cells were tested and qualified with its significant secretory factor, interleukin 10 (IL-10). We found that with the LV-hsa-miR-21-5p-inhibition-UCMSCs transplantation, the mice ovarian function can be hardly recovered than mice with LV-NC-UCMSCs transplantation, and the PTEN/Akt/FOXO3a signal pathway was activated. The expression levels of the CD8 + CD28-T cells were decreased, with the decreased levels of the IL-10 expression. In contrast, in mice with the LV-hsa-miR-21-5p-UCMSCs transplantation, the injured ovarian function can be reversed, and the PTEN/AKT/FOXO3a signal pathway was detected activated, with the increased levels of the CD8 + CD28-T cells, and the increased serum levels of IL-10. In conclusion, miR-21 improves the ovarian function recovery of POI mice with UCMSCs transplantation, and the mechanisms may be through suppressing the PTEN/AKT/FOXO3a signal pathway and up-regulating the circulating of the CD8 + CD28-T cells.


Asunto(s)
Menopausia Prematura , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , MicroARNs , Insuficiencia Ovárica Primaria , Animales , Femenino , Ratones , Antígenos CD28 , Interleucina-10/genética , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , Insuficiencia Ovárica Primaria/genética , Insuficiencia Ovárica Primaria/terapia , Insuficiencia Ovárica Primaria/inducido químicamente , Proteínas Proto-Oncogénicas c-akt
15.
Int J Oncol ; 64(5)2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38577941

RESUMEN

Glioma is the most common type of primary intracranial malignant tumor, and because of its high invasiveness and recurrence, its prognosis remains poor. The present study investigated the biological function of piggyBac transportable element derived 5 (PGBD5) in glioma. Glioma and para-cancerous tissues were obtained from five patients. Reverse transcription-quantitative PCR and western blotting were used to detect the expression levels of PGBD5. Transwell assay and flow cytometry were used to evaluate cell migration, invasion, apoptosis and cell cycle distribution. In addition, a nude mouse tumor transplantation model was established to study the downstream pathways of PGBD5 and the molecular mechanism was analyzed using transcriptome sequencing. The mRNA and protein expression levels of PGBD5 were increased in glioma tissues and cells. Notably, knockdown of PGBD5 in vitro could inhibit the migration and invasion of glioma cells. In addition, the knockdown of PGBD5 expression promoted apoptosis and caused cell cycle arrest in the G2/M phase, thus inhibiting cell proliferation. Furthermore, in vivo experiments revealed that knockdown of PGBD5 expression could inhibit Ki67 expression and slow tumor growth. Changes in PGBD5 expression were also shown to be closely related to the peroxisome proliferator-activated receptor (PPAR) signaling pathway. In conclusion, interference with PGBD5 could inhibit the malignant progression of glioma through the PPAR pathway, suggesting that PGBD5 may be a potential molecular target of glioma.


Asunto(s)
Neoplasias Encefálicas , Glioma , Animales , Ratones , Humanos , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Regulación hacia Arriba , Línea Celular Tumoral , Glioma/patología , Factores de Transcripción/genética , Neoplasias Encefálicas/patología , Proliferación Celular/genética , Apoptosis/genética , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Transposasas/genética , Transposasas/metabolismo
16.
Eur J Med Chem ; 271: 116452, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38685142

RESUMEN

Despite advancements in colorectal cancer (CRC) treatment, the prognosis remains unfavorable for patients with distant liver metastasis. Fluorescence molecular imaging with specific probes is increasingly used to guide CRC surgical resection in real-time and treatment planning. Here, we demonstrate the targeted imaging capacity of an MPA-PEG4-N3-Ang II probe labeled with near-infrared (NIR) fluorescent dye targeting the angiotensin II (Ang II) type 1 receptor (AGTR1) that is significantly upregulated in CRC. MPA-PEG4-N3-Ang II was highly selective and specific to in vitro tumor cells and in vivo tumors in a mouse CRC xenograft model. The favorable ex vivo imaging and in vivo biodistribution of MPA-PEG4-N3-Ang II afforded tumor-specific accumulation with low background and >10 contrast tumor-to-colorectal values in multiple subcutaneous CRC models at 8 h following injection. Biodistribution analysis confirmed the probe's high uptake in HT29 and HCT116 orthotopic and liver metastatic models of CRC with signal-to-noise ratio (SNR) values of tumor-to-colorectal and -liver fluorescence of 5.8 ± 0.6, 5.3 ± 0.7, and 2.7 ± 0.5, 2.6 ± 0.5, respectively, enabling high-contrast intraoperative tumor visualization for surgical navigation. Given its rapid tumor targeting, precise tumor boundary delineation, durable tumor retention and docking study, MPA-PEG4-N3-Ang II is a promising high-contrast imaging agent for the clinical detection of CRC.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Sondas Moleculares , Imagen Óptica , Receptor de Angiotensina Tipo 1 , Animales , Neoplasias Colorrectales/patología , Humanos , Ratones , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/secundario , Sondas Moleculares/química , Sondas Moleculares/síntesis química , Sondas Moleculares/farmacocinética , Receptor de Angiotensina Tipo 1/metabolismo , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Estructura Molecular , Distribución Tisular , Ratones Desnudos
17.
Langmuir ; 40(19): 9957-9964, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38683042

RESUMEN

Inspired by geckos, fibrillar microstructures hold great promise as controllable and reversible adhesives in the engineering field. However, enhancing the adhesion strength and stability of gecko-inspired adhesives (GIAs) under complex real-world contact conditions, such as rough surfaces and varying force fields, is crucial for its commercialization, yet further research is lacking. Here, we propose a hierarchically designed GIA, which features a silicone foam (SF) backing layer and a film-terminated fibrillar microstructure under a subtle multiscale design. This structure has been proven to have a "multiscale synergistic effect", allowing the material to maintain strong and stable adhesion to surfaces with changing normal pressures and roughness. Specifically, under a high load, the adhesive strength is 2 times more than that of conventional GIA, and it is 1.5 times stronger on rough surfaces compared to conventional GIA. Under high pressure and high surface roughness simultaneously, the adhesive strength is 3.3 times higher compared to conventional GIA. Our research demonstrates that the synergistic effect of multiscale biomimetic adhesion structures is highly effective in enhancing the adhesive strength of GIA under some harsh contact conditions.

18.
Noncoding RNA Res ; 9(2): 330-340, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38505306

RESUMEN

In previous study we characterized the oncogenic role of long non-coding RNA MALAT1 in esophageal squamous cell carcinoma (ESCC), but the detailed mechanism remains obscure. Here we identified glyoxalase 1 (GLO1) as the most possible executor of MALAT1 by microarray screening. GLO1 is responsible for degradation of cytotoxic methylglyoxal (MGO), which is by-product of tumor glycolysis. Accumulated MGO may lead to glycation of DNA and protein, resulting in elevated advanced glycation end products (AGEs), while glyoxalase 1 detoxify MGO to alleviate its cytotoxic effect to tumor cells. GLO1 interfering led to accumulation of AGEs and following activation of DNA injury biomarkers, which lead to cell cycle arrest and growth inhibition. In silico analysis based on online database revealed abundant enrichment of histone acetylation marker H3K27ac in GLO1 promotor, and acetyltransferase inhibitor C646 declined GLO1 expression. Acetyltransferase KAT2B, which was also identified as a target of MALAT, mediated histone lysine acetylation of GLO1 promotor, which was confirmed by ChIP-qPCR experiment. Shared binding sites of miR-206 were found on MALAT1 and KAT2B mRNA. Dual-luciferase reporter assays confirmed interaction within MALAT1-miR-206-GLO1. Finally, we identified MALAT1 encapsuled by exosome from donor cells, and transferred malignant behaviors to recipient cells. The secreted exosomes may enter circulation, and serum MALAT1 level combined with traditional tumor markers showed potential power for ESCC diagnosis.

19.
Sci Rep ; 14(1): 5886, 2024 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467692

RESUMEN

Erectile dysfunction (ED) is a common and difficult to treat disease, and has a high incidence rate worldwide. As a marker of vascular disease, ED usually occurs in cardiovascular disease, 2-5 years prior to cardiovascular disease events. The extracellular matrix (ECM) network plays a crucial role in maintaining cardiac homeostasis, not only by providing structural support, but also by promoting force transmission, and by transducing key signals to intracardiac cells. However, the relationship between ECM and ED remains unclear. To help fill this gap, we profiled single-cell RNA-seq (scRNA-seq) to obtain transcriptome maps of 82,554 cavernous single cells from ED and non-ED samples. Cellular composition of cavernous tissues was explored by uniform manifold approximation and projection. Pseudo-time cell trajectory combined with gene enrichment analysis were performed to unveil the molecular pathways of cell fate determination. The relationship between cavernous cells and the ECM, and the changes in related genes were elucidated. The CellChat identified ligand-receptor pairs (e.g., PTN-SDC2, PTN-NCL, and MDK-SDC2) among the major cell types in the cavernous tissue microenvironment. Differential analysis revealed that the cell type-specific transcriptomic changes in ED are related to ECM and extracellular structure organization, external encapsulating structure organization, and regulation of vasculature development. Trajectory analysis predicted the underlying target genes to modulate ECM (e.g., COL3A1, MDK, MMP2, and POSTN). Together, this study highlights potential cell-cell interactions and the main regulatory factors of ECM, and reveals that genes may represent potential marker features of ED progression.


Asunto(s)
Enfermedades Cardiovasculares , Disfunción Eréctil , Masculino , Humanos , Enfermedades Cardiovasculares/complicaciones , Pene/irrigación sanguínea , Matriz Extracelular/genética , Análisis de Secuencia de ARN
20.
Sleep Biol Rhythms ; 22(2): 163-180, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38524168

RESUMEN

Circadian rhythm is an internal timing system and harmonizes a variety of cellular, behavioral, and physiological processes to daily environment. Circadian disturbance caused by altered life style or disrupted sleep patterns inevitably contributes to various disorders. As the rapidly increased cancer occurrences and subsequent tremendous financial burdens, more researches focus on reducing the morbidity rather than treating it. Recently, many epidemiologic studies demonstrated that circadian disturbance was tightly related to the occurrence and development of cancers. For urinary system, numerous clinical researches observed the incidence and progress of prostate cancer were influenced by nightshift work, sleep duration, chronotypes, light exposure, and meal timing, this was also proved by many genetic and fundamental findings. Although the epidemiological studies regarding the relationship between circadian disturbance and kidney/bladder cancers were relative limited, some basic researches still claimed circadian disruption was closely correlated to these two cancers. The role of circadian chemotherapy on cancers of prostate, kidney, and bladder were also explored, however, it has not been regularly recommended considering the limited evidence and poor standard protocols. Finally, the researches for the impacts of circadian disturbance on cancers of adrenal gland, penis, testis were not found at present. In general, a better understanding the relationship between circadian disturbance and urological cancers might help to provide more scientific work schedules and rational lifestyles which finally saving health resource by reducing urological tumorigenesis, however, the underlying mechanisms are complex which need further exploration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA