Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Int J Biol Macromol ; 279(Pt 2): 135237, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39218190

RESUMEN

Kuey teow is one of the delicacies of Guangdong, China and is a gluten-free noodle dish made from rice. It has a short storage period and extending the shelf life by quick freezing induces quality deterioration due to temperature fluctuations. To improve its freeze-thaw frozen storage quality, this paper examined the effects of hydroxypropyl corn starch (HCS), guar gum (GG), and compound phosphates (CP) on the quality of quick-frozen kuey teow during freeze-thaw cycles. The mechanism was investigated by identifying changes in the moisture status, aging degree of the starch, and textural and cooking characteristics. The results showed that all three additions improved the toughness, chewiness and steaming characteristics of the kuey teow, with CP significantly enhancing chewiness. XRD and FTIR results revealed that GG more significantly inhibited the decrease of starch crystallinity, while HCS inhibited starch aging. GG, HCS and CP all improved the hydration characteristics and water holding capacity of rice starch. GG enhances the ability of starch to bind more tightly with water, resulting in a more uniform water distribution and a more continuous and tight structure of the kuey teow. This study will provide a theoretical basis for compounding and optimizing the quick-freezing of kuey teow.

2.
Foods ; 13(16)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39200450

RESUMEN

This study was conducted to investigate the effect of inoculation with Exiguobacterium profundum FELA1 isolated from traditional shrimp paste and koji on the taste, flavor characteristics, and bacterial community of rapidly fermented shrimp paste. E-nose and e-tongue results showed higher levels of alcohols, aldehydes, and ketones, enhanced umami and richness, and reduced bitterness and astringency in samples of shrimp paste inoculated with fermentation (p < 0.05). Eighty-two volatile compounds were determined using headspace solid-phase microextraction and gas chromatography-mass spectrometry (HS-SPEM-GC-MS). The contents of 3-methyl-1-butanol, phenylethanol, isovaleraldehyde, and 2-nonanone in the inoculated samples were significantly increased (p < 0.05), resulting in pleasant odors such as almond, floral, and fruity. High-throughput sequencing results showed that the addition of koji and FELA1 changed the composition and abundance of bacteria and reduced the abundance of harmful bacteria. Spearman's correlation coefficient indicated that the alcohols, aldehydes, and ketones of the inoculated fermented samples showed a strong correlation (|ρ| > 0.6) with Virgibacillus and Exiguobacterium, which contributed to the formation of good flavor in the fast fermented shrimp paste. This study may offer new insights into the production of rapidly fermented shrimp paste with better taste and flavor.

3.
Food Chem Toxicol ; 191: 114876, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39033870

RESUMEN

Perchlorate, an aqueous-soluble compound resistant to degradation, is mainly used in the synthesis of pyrotechnics, herbicides, and other products. It serves as a pivotal component in the production of fireworks, rocket fuel, and explosives. Perchlorate was recognized as a pollutant owing to the potential toxic risk to thyroid function, which could pose a potential threat to the nervous system of infants and pregnant women. Some study had found that perchlorate existed in food, water and air. This study aimed to investigate the levels of perchlorate in six types of foods (n = 570) from South China, and evaluate potential exposure risks for residents. Vegetables were found to have the highest median levels of foods, attributed to elevated water content in leafy vegetables and facile solubility of perchlorate in water. The relatively low levels of perchlorate in food compared to other studies could attribute to the fact that the period of food we purchased in this study was during the wet season while the contaminants, such as perchlorate, were diluted. The maximum hazard quotient (HQ) values for all residents consuming different foods and water were all higher than 1 This suggested that there is a potential health risk of perchlorate to residents in South China. Those may be attributed to the high levels of perchlorate in some individual samples of meat and eggs. However, the 95th percentile of HQ values in all residents was less than 1, indicating that there is no potential health risk of perchlorate to most residents in South China.


Asunto(s)
Exposición Dietética , Contaminación de Alimentos , Percloratos , Percloratos/análisis , Percloratos/toxicidad , Humanos , China , Contaminación de Alimentos/análisis , Medición de Riesgo , Femenino , Verduras/química , Análisis de los Alimentos
4.
Food Chem ; 458: 140238, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38968705

RESUMEN

Corynebacterium glutamicum was used to ferment wheat gluten hydrolysates (WGHs) to prepare flavour base. This study investigated the effect of hydrolysis degrees (DHs) and fermentation time on flavour of WGHs. During fermentation, the contents of amino nitrogen, total acid and small peptides increased, while the protein and pH value decreased. Succinic acid, GMP, and Glu were the prominent umami substances in fermented WGHs. The aromas of WGHs with different DHs could be distinguished by electronic nose and GC-IMS. Based on OAV of GC-MS, hexanal was the main compound in WGHs, while phenylethyl alcohol and acetoin were dominant after fermentation. WGHs with high DHs accumulated more flavour metabolites. Correlation analysis showed that small peptides (<1 kDa) could promote the formation of flavour substances, and Asp was potentially relevant flavour precursor. This study indicated that fermented WGHs with different DHs can potentially be used in different food applications based on flavour profiles.


Asunto(s)
Corynebacterium glutamicum , Fermentación , Aromatizantes , Glútenes , Triticum , Glútenes/metabolismo , Glútenes/química , Glútenes/análisis , Triticum/química , Triticum/metabolismo , Triticum/microbiología , Aromatizantes/metabolismo , Aromatizantes/química , Hidrólisis , Corynebacterium glutamicum/metabolismo , Corynebacterium glutamicum/química , Odorantes/análisis , Gusto
5.
Ultrason Sonochem ; 109: 106988, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39038434

RESUMEN

In this study, the effect of ultrasound-assisted non-covalent binding of different polyphenols (tannins, quercetin, and resveratrol) on the structure and functional properties of myofibrillar proteins (MP) from the golden threadfin (Nemipterus virgatus) was investigated. The effect of ultrasound-assisted polyphenol incorporation on the structure and properties of MP was evaluated by multispectral analysis, interfacial properties, emulsification properties and antioxidant properties et al. The results revealed that the protein-polyphenol interaction led to a conformational change in the microenvironment around the hydrophobic amino acid residues, resulting in an increase in the equilibrium of the MP molecules in terms of affinity and hydrophobicity. Ultrasound assisted polyphenols addition also led to a significant decrease of the oil/water interfacial tension (from 21.22 mN/m of MP to 8.66 mN/m of UMP-TA sample) and a significant increase of the EAI (from 21.57 m2/g of MP to 28.79 m2/g of UMP-TA sample) and ES (from 84.76 min of MP to 124.25 min of UMP-TA). In addition, ultrasound-assisted polyphenol incorporation could enhance the antioxidant properties of MP, with the DPPH and ABTS radical scavenging rate of UMP-TA increase of 47.7 % and 55.2 % in comparison with MP, respectively. The results demonstrated that the noncovalent combination with polyphenols under ultrasound-assisted conditions endowed MP with better functional properties, including solubility, emulsification, foaming, and antioxidant properties through structure change. This study can provide innovative theoretical guidance for effectively preparing aquatic protein-polyphenol non-covalent complexes with multiple functions and improving the processing and utilization value of aquatic proteins.


Asunto(s)
Antioxidantes , Polifenoles , Ondas Ultrasónicas , Polifenoles/química , Animales , Antioxidantes/química , Proteínas Musculares/química , Interacciones Hidrofóbicas e Hidrofílicas , Miofibrillas/química , Unión Proteica , Peces
6.
J Agric Food Chem ; 72(20): 11515-11530, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38726599

RESUMEN

Chronic stress is a major inducer of anxiety and insomnia. Milk casein has been studied for its stress-relieving effects. We previously prepared a casein hydrolysate (CP) rich in the sleep-enhancing peptide YPVEPF, and this study aims to systemically investigate the different protective effects of CP and casein on dysfunction and anxiety/insomnia behavior and its underlying mechanisms in chronically stressed mice. Behavioral results showed that CP ameliorated stress-induced insomnia and anxiety more effectively than milk casein, and this difference in amelioration was highly correlated with an increase in GABA, 5-HT, GABAA, 5-HT1A receptors, and BDNF and a decrease in IL-6 and NMDA receptors in stressed mice. Furthermore, CP restored these dysfunctions in the brain and colon by activating the HPA response, modulating the ERK/CREB-BDNF-TrκB signaling pathway, and alleviating inflammation. The abundant YPVEPF (1.20 ± 0.04%) and Tyr-based/Trp-containing peptides of CP may be the key reasons for its different effects compared to casein. Thus, this work revealed the main active structures of CP and provided a novel dietary intervention strategy for the prevention and treatment of chronic-stress-induced dysfunction and anxiety/insomnia behaviors.


Asunto(s)
Ansiedad , Encéfalo , Caseínas , Trastornos del Inicio y del Mantenimiento del Sueño , Animales , Masculino , Ratones , Ansiedad/prevención & control , Conducta Animal/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Caseínas/química , Caseínas/administración & dosificación , Sustancias Protectoras/administración & dosificación , Sustancias Protectoras/farmacología , Sustancias Protectoras/química , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Trastornos del Inicio y del Mantenimiento del Sueño/metabolismo , Trastornos del Inicio y del Mantenimiento del Sueño/fisiopatología , Trastornos del Inicio y del Mantenimiento del Sueño/prevención & control , Estrés Psicológico
7.
Foods ; 13(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38790793

RESUMEN

Epimedium has been used for functional foods with many beneficial functions to human health. Wushanicaritin is one of the most important chemicals int Epimedium. This study investigated the neuroprotective effects of wushanicaritin and potential underlying mechanisms. The results demonstrated that wushanicaritin possessed superior intercellular antioxidant activity compared to icaritin. Wushanicaritin, with an EC50 value of 3.87 µM, showed better neuroprotective effect than quercetin, a promising neuroprotection agent. Wushanicaritin significantly reversed lactate dehydrogenase release, reactive oxygen species generation, cell apoptosis, and mRNA expression related to cell apoptosis and oxidative defense, in glutamate-induced PC-12 cells. Wushanicaritin could also maintain the enzymatic antioxidant defense system and mitochondrial function. The suppression of caspase-3 activation and amelioration of mitochondrial membrane potential loss and nucleus morphology changes were involved in the antiapoptotic effect of wushanicaritin. These findings suggested that wushanicaritin possesses excellent intercellular antioxidant and neuroprotective activities, showing potential promise in functional foods.

8.
Environ Sci Pollut Res Int ; 31(6): 8510-8518, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38182951

RESUMEN

Chlorate and perchlorate are emerging pollutants that may interfere with thyroid function. Since they are highly water soluble, chlorate and perchlorate in tea leaves cause health concerns but have scarcely been studied. In this study, chlorate and perchlorate concentrations in 216 tea samples from different regions of China were determined. Perchlorate was detected in all the samples with a median concentration of 44.1 µg kg-1, while the chlorate detection frequency was 15.7%. We observed regional differences in perchlorate contents in tea leaves, with the highest quantity found in the central region of China. Except for dark tea, the concentration of perchlorate in tea infusions decreased with the increased number of times the tea leaves were brewed. The hazard quotients (HQs) of chlorate and perchlorate in all the samples were less than 1, suggesting negligible health risks caused by these pollutants from tea consumption. To the best of our knowledge, this is the first study to investigate chlorate and perchlorate contamination in tea infusions by simulating brewing behavior.


Asunto(s)
Cloratos , Contaminantes Ambientales , Humanos , Cloratos/análisis , Percloratos/análisis , , China
9.
J Sci Food Agric ; 104(5): 2947-2958, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38041433

RESUMEN

BACKGROUND: Casein hydrolysates have attracted much interest as anti-diabetic food, but their hypoglycemic mechanism and biopeptides are not well understood. This study aimed to explore the anti-diabetic mechanism and potential biopeptides of casein hydrolysates in streptozotocin/high-fat-diet-induced diabetic rats and HepG2 cells. RESULTS: Oral administration of casein hydrolysate prepared with papain-Flavourzyme combination (P-FCH) decreased fasting blood glucose, improved oral glucose tolerance, and reduced HbA1c values in diabetic rats. P-FCH was ineffective in alleviating insulin resistance (homeostasis model assessment and insulin sensitivity index) and enhancing hepatic insulin signaling transduction (phosphorylated Akt, hexokinase activity, and pyruvate kinase activity) in diabetic rats. However, P-FCH significantly upregulated adenosine monophosphate-activated protein kinase phosphorylation and glucose transporter-2 expression, inhibited phosphoenolpyruvate carboxylase kinase activity, and elevated glycogen content in liver tissue of diabetic rats. Furthermore, P-FCH increased glucose consumption independently in normal and insulin-resistant HepG2 cells without the presence of insulin. The peptide composition of P-FCH was characterized. The potential biopeptides in P-FCH showed the sequence characteristic of a Val at the N-terminal or a Pro at the P2 position, and the hypoglycemic activity of Val-Pro-Leu-Gly (the most potential biopeptide in P-FCH) was verified by oral glucose tolerance test in mice. CONCLUSION: These results suggested that activation of the non-insulin-mediated AMPK pathway might be the determinant mechanism of P-FCH on the hypoglycemic effect. The novel peptide Val-Pro-Leu-Gly in P-FCH was effective in reducing blood glucose levels when orally administered to mice. © 2023 Society of Chemical Industry.


Asunto(s)
Diabetes Mellitus Experimental , Resistencia a la Insulina , Ratas , Ratones , Animales , Caseínas/química , Glucemia/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Estreptozocina , Hipoglucemiantes , Péptidos/química , Insulina , Hígado/metabolismo
10.
Int J Biol Macromol ; 248: 126504, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37625739

RESUMEN

The antidiabetic activity and underlying mechanisms of Fucus vesiculosus polysaccharide (FVP) were studied in type 2 diabetic rats. Our results exhibited that FVP intervention reversed body weight loss, alleviated hyperglycemia and insulin resistance in diabetic rats. FVP also had the potential to ameliorate dyslipidemia, liver and kidney dysfunction, decrease oxidative stress, promote glycogen synthesis, and boost short-chain fatty acid production and total bile acid excretion. 16S rRNA gene sequencing analysis suggested that FVP interfered with the gut microbiota in a beneficial manner. Moreover, RT-qPCR results demonstrated that the antidiabetic activity of FVP in connection with the acceleration of blood glucose absorption and glycogen synthesis, the inhibition of gluconeogenesis, and the regulation of lipid metabolism in the liver. These findings suggested that FVP had antidiabetic effects on high-fat diet and STZ-induced diabetic rats and could be a potential resource for treating type 2 diabetes mellitus.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Fucus , Microbioma Gastrointestinal , Animales , Ratas , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Experimental/tratamiento farmacológico , ARN Ribosómico 16S , Metabolismo de los Lípidos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Polisacáridos/farmacología , Expresión Génica , Glucolípidos , Glucógeno
11.
J Agric Food Chem ; 71(18): 6987-6998, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37128773

RESUMEN

WCPFSRSF, an octapeptide (Trp-Cys-Pro-Phe-Ser-Arg-Ser-Phe), has been reported to improve memory in mice, but its gastrointestinal stability is unclear. The objective of this study was to evaluate the gastrointestinal stability of peptide WCPFSRSF and explore the neuroprotective potential of its digestive fragments. Results showed that the content of WCPFSRSF after gastric and gastrointestinal digestion decreased to 71.64% and less than 1%, respectively. Furthermore, the antioxidant and neuroprotective ability of WCPFSRSF were also affected. Eleven and nine peptides were identified in its gastric and gastrointestinal digestive products, respectively. Multiple bioinformatics tools in combination with principal component analysis were employed to assess the physicochemical and structural properties of peptides. Novel peptides generated after gastrointestinal digestion could be classified into three groups: the first group had high bioactivity and bioavailability; the second group had high amphiphilicity, charge, and net hydrogen; and the third group had a long peptide chain. In addition, the representative peptides WCPF and SR showed neuroprotective ability.


Asunto(s)
Tracto Gastrointestinal , Péptidos , Animales , Ratones , Péptidos/química , Tracto Gastrointestinal/química , Estómago , Neuroprotección , Digestión
12.
Anal Biochem ; 670: 115138, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37024002

RESUMEN

Cyclophosphamide (CP) is widely used in clinical fields. Beside its therapeutic effects, CP shows toxicity depending on dose and administration schedule. In this study, the urinary metabolic profiles were investigated in mice intraperitoneally injected with high-dose CP (150 mg/kg body weight) once a week over four weeks using nuclear magnetic resonance (NMR)-based metabolomics. Twenty-six metabolites were identified as potential biomarkers by multivariate statistical analysis. A decrease in isoleucine, alanine, N-acetylglutamic acid, proline, methionine, valine, phenylacetylglulamine, dimethylamine, hippurate, acetic acid, lactate, α-oxoglutarate, citrate, malonic acid, creatinine, niacin, ß-hydroxybutyrate, and betaine, whereas an increase in leucine, glutamate, glycine, taurine, phenylacetylglycine, glucose, creatine, and choline were observed in the urine of high-dose CP-treated mice. Metabolites related to amino acid metabolism, energy metabolism, and gut microbial metabolism were changed markedly in the urine. Further metabolic pathway analysis suggested that seven metabolic pathways, including alanine, aspartate, and glutamate metabolism, arginine biosynthesis, glyoxylate, and dicarboxylate metabolism, glycine, serine and threonine metabolism, d-glutamine and d-glutamate metabolism, arginine, and proline metabolism, citrate cycle, as well as the gut microbiota metabolism, were significantly involved in response to high-dose CP treatment. These findings help to predict the toxicity of CP and understand the biological mechanism of the toxicity of CP.


Asunto(s)
Alanina , Metabolómica , Ratones , Animales , Espectroscopía de Protones por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Glicina , Ciclofosfamida/toxicidad , Prolina , Arginina
13.
Food Chem ; 413: 135530, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36758386

RESUMEN

The current study was aimed to enhance the solubility, dispersibility and biotransformation efficacy of ellagic acid (EA) by preparing food-derived ellagic acid-Undaria pinnatifida polysaccharides solid dispersion (EA/UPP SD). The results demonstrated that the solubility of EA/UPP SD was improved from 0.014 mg/mL to 0.383 mg/mL, and the enhancement was related to converting to a more amorphous state and restraining its self-aggregation during the mechanochemical process. The structure of EA/UPP SDs was mostly maintained by hydrogen bonds and hydrophobic interactions between EA and UPP. Moreover, the result of in vitro anaerobic incubations showed the biotransformation process was improved with EA/UPP SD addition to substrate due to the advance of microbial accessibility in EA dispersion. Altogether, these results indicated that the EA/UPP SDs expanded the application of EA by increasing the solubility and dispersity, and provided a theoretical basis for bioconversion efficiency enhancement.


Asunto(s)
Ácido Elágico , Undaria , Ácido Elágico/química , Undaria/química , Solubilidad , Polisacáridos/química
14.
Int J Biol Macromol ; 234: 123762, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36812963

RESUMEN

This study aimed to investigate the digestion and fermentation processes of lactoferrin (LF) glycated with chitooligosaccharide (COS) under a controlled Maillard reaction, utilizing the in vitro digestion and fermentation model, and to compare the results of these processes to LF undertaken without glycation. After gastrointestinal digestion, the products of the LF-COS conjugate were found to have more fragments with lower molecular weight than LF, and the antioxidant capabilities (via ABTS and ORAC assay) of the LF-COS conjugate digesta also increased. In addition, the undigested fractions could be further fermented by the intestinal microbiota. Compared with LF, more short-chain fatty acids (SCFAs) were generated (from 2397.40 to 2623.10 µg/g), and more species of microbiota (from 451.78 to 568.10) were observed in LF-COS conjugate treatment. Furthermore, the relative abundance of Bacteroides and Faecalibacterium that could utilize carbohydrates and metabolic intermediates to produce SCFAs also increased in LF-COS conjugate than that of LF. Our results demonstrated that glycation with COS under the controlled wet-heat treatment Maillard reaction could modify the digestion of LF and have a potentially positive influence on the intestinal microbiota community.


Asunto(s)
Lactoferrina , Reacción de Maillard , Lactoferrina/metabolismo , Fermentación , Digestión
15.
Front Nutr ; 9: 1043175, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36352904

RESUMEN

Zingiber officinale (ZO) is a traditional food condiment. The essential oils of Z. officinale (ZOEOs) are known to have multiple bioactivities. In this study, gas chromatography mass spectrometer (GC-MS) analytical method was used to identify active ingredient present in ZOEOs. A total of 41 compounds were identified in ZOEOs. Major components in ZOEOs were zingiberene (19.71%), (+)-ß-cedrene (12.85%), farnesene (12.17%), α-curcumene (10.18%) and ß-elemene (3.54%). Experimental results of 12-O-tetradecanoylphorbol-13 acetate (TPA) induced ear swelling validation mice model showed that ZOEOs treatment has better anti-inflammatory effect compared with ibuprofen (positive control) at high concentrations. Histological and immunohistochemical analysis showed that ZOEOs significantly decreased COX-2, IL-6 and NF-κB expression in a dose dependent manner. The mRNA levels of COX-2 and NF-κB were also down regulated by the application of ZOEOs. This indicated that ZOEOs exhibited positive effects in ear skin protection. Antibacterial experimental results showed that EOZOs had anti-bacterial effects on Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. DPPH radical scavenging, A549 cell line and LNCaP cell line inhibition results indicated that ZOEOs exhibited potential antioxidant and anti-tumor properties. The findings of these study provide scientific basis on therapeutic use of ZO in food, cosmetic and pharmaceutical industries.

16.
Foods ; 11(22)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36429334

RESUMEN

Amomum villosum Lour. (A. villosum), a comestible medicinal plant, has been traditionally used in China to treat diarrhea, stomach fullness, and abdominal distension. Polysaccharide, the main chemical component of A. villosum, has been shown to possess potential antioxidant and glycosidase inhibitory activities; however, whether it has anticolitis activity is unknown. The aim of this research was to evaluate the anticolitis effects of A. villosum polysaccharide (AVLP) in BALB/c mice. The results showed that AVLP administration significantly reversed body weight loss, colon shortening and colon weight gain and decreased the levels of proinflammatory cytokines and chemokines in colitis mice (p < 0.05). AVLP administration also maintained intestinal barrier function by the upregulation of ZO-1 protein expression (p < 0.05). In addition, high-throughput sequencing analysis showed that AVLP possessed a great regulatory effect on the growth of Adlercreutzia, Clostridium, Streptococcus, Parabacteroides, Helicobacter, Odoribacter, and Alistipes (p < 0.05, LDA score > 2). The correlation analysis revealed that the protective effects against colitis of AVLP were highly correlated with intestinal bacterium regulation. These results suggest that AVLP intake could serve as a prospective nutritional strategy for inflammatory bowel diseases.

17.
Front Nutr ; 9: 1001671, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36245528

RESUMEN

A solid phase extraction-high-performance liquid chromatography-tandem Orbitrap high resolution mass spectrometry (HPLC-Orbitrap HRMS) method was established for the determination of 12 mycotoxins (ochratoxin A, ochratoxin B, aflatoxin B1, aflatoxin B2, aflatoxin G1, aflatoxin G2, HT-2 toxin, sterigmatocystin, diacetoxysciroenol, penicillic acid, mycophenolic acid, and citreoviridin) in edible oil, soy sauce, and bean sauce. Samples were extracted by 80:20 (v:v) acetonitrile-water solution, purified by PRiME HLB column, separated by aQ C18 column with mobile phase consisting of 0.5 mmol/L ammonium acetate-0.1% formic acid aqueous solution and methanol. The results showed that the limits of detection (LODs) and limits of quantification (LOQs) of 12 mycotoxins were 0.12-1.2 µg/L and 0.40-4.0 µg/L, respectively. The determination coefficients of 12 mycotoxins in the range of 0.20-100 µg/L were > 0.998. The average recoveries in soy sauce and bean sauce were 78.4-106.8%, and the relative standard deviations (RSDs) were 1.2-9.7% under three levels, including LOQ, 2× LOQ and 10 × LOQ. The average recoveries in edible oil were 78.3-115.6%, and the precision RSD (n = 6) was 0.9-8.6%. A total of 24 edible oils, soy sauce and bean sauce samples were analyzed by this method. AFB1, AFB2, sterigmatocystin and mycophenolic acid were detected in several samples at concentrations ranging from 1.0 to 22.1 µg/kg. The method is simple, sensitive, and rapid and can be used for screening and quantitative analysis of mycotoxin contamination in edible oil, soy sauce, and bean sauce.

18.
Foods ; 11(14)2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35885282

RESUMEN

The aim of this study was to investigate the effects of bergamot polysaccharide (BP) and Laoxianghuang polysaccharides (LPs, fermented bergamot) on the microbiome and metabolome during the in vitro fermentation of gut microbiota from patients with hyperlipidemia. Results indicated that both BP and LPs were able to increase the production of acetic acid, propionic acid, and butyric acid. However, only LPs could decrease the content of isobutyric acid and isovaleric acid, which are detrimental to gut health. A 16S rRNA analysis showed that both BP and LPs could reduce the proportion of Fusobacterium, whereas they increased the Bacteroides content in hyperlipidemia. Untargeted UPLC-MS/MS metabolomic profiling found six bio-markers that were significantly changed after BP and LPs intervention, and four of the down-regulated metabolites were long-chain fatty acids associated with vascular diseases. These findings provide new evidence that BP and LPs have the potential to regulate imbalances in the gut microbiota in patients with hyperlipidemia and ameliorate its metabolic abnormalities.

19.
Food Funct ; 13(14): 7918-7929, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35789357

RESUMEN

Our previous studies have proved that the anti-digestive polysaccharide from Macrocystis pyrifera possesses potential hypoglycemic and lipid-lowering activities; however, its potential mechanisms for improving diabetes have not been elucidated. The current study was aimed to determine the anti-diabetic effects and possible mechanisms of Macrocystis pyrifera polysaccharides (MPP) in diabetic rats. After 8-week MPP treatment, the serum profiles, gut bacteria composition and relative gene expressions of rats were determined. MPP administration effectively ameliorated the diabetic symptoms, dyslipidemia, liver and kidney damage, oxidative stress and chronic inflammation in diabetic rats. In addition, MPP treatment could also notably improve the microbial dysbiosis by increasing the beneficial bacteria and decreasing a bacterial pathogen in the diabetic rats. The RT-qPCR analysis indicated that MPP intervention significantly up-regulated the IRS/PI3K/AKT signaling pathway and down-regulated the relative expressions of glucose-6-phosphatase (G-6-Pase), phosphoenolpyruvate carboxykinase (PEPCK), acetyl-CoA carboxylase (ACC), hydroxymethylglutaryl CoA reductase (HMGCR) and sterol regulatory element binding protein 1c (SREBP-1c) in diabetic rats. These results demonstrated that MPP had the potential to be exploited as functional foods or pharmaceutical supplements for preventing and treating diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Macrocystis , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Hígado/metabolismo , Macrocystis/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Polisacáridos/metabolismo , Polisacáridos/farmacología , Ratas
20.
Food Res Int ; 157: 111253, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35761565

RESUMEN

Chicken hydrolysates (CHs) have been reported to protect mice against alcoholic liver injury possibly through oxidative stress reduction. In this study, the antioxidant activity of CHs was studied. Results showed that CHs exhibited significant antioxidant activity (around 600 and 400 µM TEAC/g in ORAC and ABTS assay, respectively) and could resist simulated gastrointestinal digestion. A total of 22 peptides were identified after antioxidant activity-oriented isolation using size-exclusion chromatography and high-performance liquid chromatography. Further in silico analysis and the validation of antioxidant activity revealed that novel peptides (RWGG and YYCQ) exhibited strong antioxidant activity. The most active peptide YYCQ displayed a TEAC value of 3.54 and 4.28 µM TEAC/µM in ORAC and ABTS assay, respectively. These peptides could contribute to reduce oxidative stress and protect against alcohol-induced liver injury. However, further studies understanding the bioactivity of such peptides in vivo are necessary before further applying them as functional food ingredient.


Asunto(s)
Antioxidantes , Subtilisinas , Animales , Antioxidantes/química , Antioxidantes/farmacología , Pollos , Ratones , Péptidos/química , Péptidos/farmacología , Hidrolisados de Proteína/química , Subtilisinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA