RESUMEN
The current research studied how Fe3O4 nanomaterials (NMs) and CaO2 affect humification and Cr(VI) immobilization and reduction during the composting of oil-tea Camellia meal and Cr-contaminated soil. The results showed that Fe3O4 NMs and CaO2 successfully construct a Fenton-like reaction in this system. The excitation-emission matrix-parallel factor (EEM-PARAFAC) demonstrated that this Fenton-like treatment increased the generation of humic acids and accelerated the humification. Meantime, RES-Cr increased by 5.91 % and Cr(VI) decreased by 16.36 % in the treatment group with CaO2 and Fe3O4 NMs after 60 days. Moreover, the microbial results showed that Fe3O4 NMs and CaO2 could promote the enrichment of Cr(VI) reducing bacteria, e.g., Bacillus, Pseudomonas, and Psychrobacter, and promote Cr(VI) reduction. This study gives a novel view and theoretical reference to remediate Cr(VI) pollution through composting.
Asunto(s)
Compuestos de Calcio , Cromo , Compostaje , Sustancias Húmicas , Óxidos , Cromo/química , Compuestos de Calcio/química , Óxidos/química , Compostaje/métodos , Compuestos Férricos/química , Biodegradación Ambiental , Suelo/química , Bacterias/metabolismo , Contaminantes del Suelo/químicaRESUMEN
The electric field-assisted composting system (EACS) is an emerging technology that can enhance composting efficiency, but little attention has been given to electrode materials. Herein, an EACS was established to investigate the effects of electrode materials on humic substance formation and heavy metal speciation. Excitation-emission matrix analysis showed that carbon-felt and stainless-steel electrodes increased humic acid (HA) by 48.57 % and 47.53 %, respectively. In the EACS with the carbon-felt electrode, the bioavailability factors (BF) of Cu and Cr decreased by 18.00 % and 7.61 %, respectively. Despite that the stainless-steel electrodes decreased the BF of As by 11.26 %, the leaching of Cr, Ni, Cu, and Fe from the electrode itself is an inevitable concern. Microbial community analyses indicated that the electric field increased the abundance of Actinobacteria and stimulated the multiplication of heavy metal-tolerant bacteria. Redundancy analysis indicates that OM, pH, and current significantly affect the evolution of heavy metal speciation in the EACS. This study first evaluated the metal leaching risk of stainless-steel electrode, and confirmed that carbon-felt electrode is environment-friendly material with high performance and low risk in future research with EACS.
Asunto(s)
Compostaje , Metales Pesados , Suelo/química , Metales Pesados/análisis , Sustancias Húmicas/análisis , Acero Inoxidable , Bacterias , CarbonoRESUMEN
Reactive oxygen species (ROS) has great influence in many physiological or pathological processes in organisms. In the site of bone defects, the overproduced ROS significantly affects the dynamic balance process of bone regeneration. Many antioxidative organic and inorganic antioxidants showed good osteogenic ability, which has been widely used for bone repair. It is of great significance to summarize the antioxidative bone repair materials (ABRMs) to provide guidance for the future design and preparation of osteogenic materials with antioxidative function. Here, this review introduced the major research direction of ABRM at present in nanoscale, 2-dimensional coating, and 3-dimensional scaffolds. Moreover, the referring main active substances and antioxidative properties were classified, and the positive roles of antioxidative materials for bone repair have also been clearly summarized in signaling pathways, antioxidant enzymes, cellular responses and animal levels.
RESUMEN
Ceria (CeO2) based materials possess many antioxidant enzyme-like activities and unique properties for bone repair, but their free radical scavenging function is still insufficient. In order to deal with the complex oxidative stress environment in bone repair, multifunctional composite CeO2 nanozymes (CeO2NZs), featuring multiple antioxidative properties, were constructed via surface modification on CeO2NZs with nanoscale poly(tannic acid) (PTA) coatings. Moreover, we adjusted pH conditions (ranging from 4 to 9) to effectively control the formation and antioxidative properties of PTA coatings on CeO2NZ surfaces. Here, the physical properties of this novel inorganic and organic composite antioxidant, such as surface morphology, particle size, crystal structure, surface charge and element composition, were thoroughly characterized. The PTA/CeO2NZs showed obvious coating morphology under weak acid conditions (pH = 5-6), and the PTA layer at pH = 5 is about 1 nm in thickness. Compared with untreated CeO2NZs, the PTA/CeO2NZs showed stronger SOD-like activity and obviously higher free radical scavenging rate (for both ABTS+Ë and DPPHË).Notably, this composite antioxidative nanozyme not only exhibited favorable cell proliferation of preosteoblasts (MC3T3-E1) but also provided strong antioxidative property to maintain cell vitality against H2O2 induced oxidative damage. In particular, this study provides new insights into the designing of surface polyphenolic coatings at the nanoscale, and these multiple antioxidative properties shown by PTA coated CeO2NZs make them suitable for protecting cells under the oxidative stress environment.