Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
G3 (Bethesda) ; 11(12)2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34515796

RESUMEN

Aegilops tauschii is the donor of the D subgenome of hexaploid wheat and an important genetic resource. The reference-quality genome sequence Aet v4.0 for Ae. tauschii acc. AL8/78 was therefore an important milestone for wheat biology and breeding. Further advances in sequencing acc. AL8/78 and release of the Aet v5.0 sequence assembly are reported here. Two new optical maps were constructed and used in the revision of pseudomolecules. Gaps were closed with Pacific Biosciences long-read contigs, decreasing the gap number by 38,899. Transposable elements and protein-coding genes were reannotated. The number of annotated high-confidence genes was reduced from 39,635 in Aet v4.0 to 32,885 in Aet v5.0. A total of 2245 biologically important genes, including those affecting plant phenology, grain quality, and tolerance of abiotic stresses in wheat, was manually annotated and disease-resistance genes were annotated by a dedicated pipeline. Disease-resistance genes encoding nucleotide-binding site domains, receptor-like protein kinases, and receptor-like proteins were preferentially located in distal chromosome regions, whereas those encoding transmembrane coiled-coil proteins were dispersed more evenly along the chromosomes. Discovery, annotation, and expression analyses of microRNA (miRNA) precursors, mature miRNAs, and phasiRNAs are reported, including miRNA target genes. Other small RNAs, such as hc-siRNAs and tRFs, were characterized. These advances enhance the utility of the Ae. tauschii genome sequence for wheat genetics, biotechnology, and breeding.


Asunto(s)
Aegilops , Genoma de Planta , Fitomejoramiento , Poaceae/genética , Triticum/genética
2.
Hortic Res ; 8(1): 111, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33931626

RESUMEN

Soil-borne plant pathogens represent a serious threat that undermines commercial walnut (Juglans regia) production worldwide. Crown gall, caused by Agrobacterium tumefaciens, and Phytophthora root and crown rots, caused by various Phytophthora spp., are among the most devastating walnut soil-borne diseases. A recognized strategy to combat soil-borne diseases is adoption of resistant rootstocks. Here, resistance to A. tumefaciens, P. cinnamomi, and P. pini is mapped in the genome of Juglans microcarpa, a North American wild relative of cultivated walnut. Half-sib J. microcarpa mother trees DJUG 31.01 and DJUG 31.09 were crossed with J. regia cv. Serr, producing 353 and 400 hybrids, respectively. Clonally propagated hybrids were genotyped by sequencing to construct genetic maps for the two populations and challenged with the three pathogens. Resistance to each of the three pathogens was mapped as a major QTL on the long arm of J. microcarpa chromosome 4D and was associated with the same haplotype, designated as haplotype b, raising the possibility that the two mother trees were heterozygous for a single Mendelian gene conferring resistance to all three pathogens. The deployment of this haplotype in rootstock breeding will facilitate breeding of a walnut rootstock resistant to both crown gall and Phytophthora root and crown rots.

3.
Plant J ; 107(1): 303-314, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33893684

RESUMEN

Until recently, achieving a reference-quality genome sequence for bread wheat was long thought beyond the limits of genome sequencing and assembly technology, primarily due to the large genome size and > 80% repetitive sequence content. The release of the chromosome scale 14.5-Gb IWGSC RefSeq v1.0 genome sequence of bread wheat cv. Chinese Spring (CS) was, therefore, a milestone. Here, we used a direct label and stain (DLS) optical map of the CS genome together with a prior nick, label, repair and stain (NLRS) optical map, and sequence contigs assembled with Pacific Biosciences long reads, to refine the v1.0 assembly. Inconsistencies between the sequence and maps were reconciled and gaps were closed. Gap filling and anchoring of 279 unplaced scaffolds increased the total length of pseudomolecules by 168 Mb (excluding Ns). Positions and orientations were corrected for 233 and 354 scaffolds, respectively, representing 10% of the genome sequence. The accuracy of the remaining 90% of the assembly was validated. As a result of the increased contiguity, the numbers of transposable elements (TEs) and intact TEs have increased in IWGSC RefSeq v2.1 compared with v1.0. In total, 98% of the gene models identified in v1.0 were mapped onto this new assembly through development of a dedicated approach implemented in the MAGAAT pipeline. The numbers of high-confidence genes on pseudomolecules have increased from 105 319 to 105 534. The reconciled assembly enhances the utility of the sequence for genetic mapping, comparative genomics, gene annotation and isolation, and more general studies on the biology of wheat.


Asunto(s)
Mapeo Cromosómico/métodos , Genoma de Planta , Triticum/genética , Cromosomas Artificiales Bacterianos , Cromosomas de las Plantas/química , Elementos Transponibles de ADN , Anotación de Secuencia Molecular
4.
New Phytol ; 230(5): 1940-1952, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33651378

RESUMEN

Pre-harvest sprouting (PHS), the germination of grain before harvest, is a serious problem resulting in wheat yield and quality losses. Here, we mapped the PHS resistance gene PHS-3D from synthetic hexaploid wheat to a 2.4 Mb presence-absence variation (PAV) region and found that its resistance effect was attributed to the pleiotropic Myb10-D by integrated omics and functional analyses. Three haplotypes were detected in this PAV region among 262 worldwide wheat lines and 16 Aegilops tauschii, and the germination percentages of wheat lines containing Myb10-D was approximately 40% lower than that of the other lines. Transcriptome and metabolome profiling indicated that Myb10-D affected the transcription of genes in both the flavonoid and abscisic acid (ABA) biosynthesis pathways, which resulted in increases in flavonoids and ABA in transgenic wheat lines. Myb10-D activates 9-cis-epoxycarotenoid dioxygenase (NCED) by biding the secondary wall MYB-responsive element (SMRE) to promote ABA biosynthesis in early wheat seed development stages. We revealed that the newly discovered function of Myb10-D confers PHS resistance by enhancing ABA biosynthesis to delay germination in wheat. The PAV harboring Myb10-D associated with grain color and PHS will be useful for understanding and selecting white grained PHS resistant wheat cultivars.


Asunto(s)
Dioxigenasas , Triticum , Dioxigenasas/genética , Germinación , Proteínas de Plantas/genética , Triticum/genética
5.
Plants (Basel) ; 9(10)2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33050178

RESUMEN

MicroRNAs (miRNAs) are important factors for the post-transcriptional regulation of protein-coding genes in plants and animals. They are discovered either by sequencing small RNAs or computationally. We employed a sequence-homology-based computational approach to identify conserved miRNAs and their target genes in Persian (English) walnut, Juglans regia, and its North American wild relative, J. microcarpa. A total of 119 miRNA precursors (pre-miRNAs) were detected in the J. regia genome and 121 in the J. microcarpa genome and miRNA target genes were predicted and their functional annotations were performed in both genomes. In the J. regia genome, 325 different genes were targets; 87.08% were regulated by transcript cleavage and 12.92% by translation repression. In the J. microcarpa genome, 316 different genes were targets; 88.92% were regulated by transcript cleavage and 11.08% were regulated by translation repression. Totals of 1.3% and 2.0% of all resistance gene analogues (RGA) and 2.7% and 2.6% of all transcription factors (TFs) were regulated by miRNAs in the J. regia and J. microcarpa genomes, respectively. Juglans genomes evolved by a whole genome duplication (WGD) and consist of eight pairs of fractionated homoeologous chromosomes. Within each pair, the chromosome that has more genes with greater average transcription also harbors more pre-miRNAs and more target genes than its homoeologue. While only minor differences were detected in pre-miRNAs between the J. regia and J. microcarpa genomes, about one-third of the pre-miRNA loci were not conserved between homoeologous chromosome within each genome. Pre-miRNA and their corresponding target genes showed a tendency to be collocated within a subgenome.

6.
New Phytol ; 228(3): 1027-1037, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32583535

RESUMEN

Powdery mildew, a fungal disease caused by Blumeria graminis f. sp. tritici (Bgt), has a serious impact on wheat production. Loss of resistance in cultivars prompts a continuing search for new sources of resistance. Wild emmer wheat (Triticum turgidum ssp. dicoccoides, WEW), the progenitor of both modern tetraploid and hexaploid wheats, harbors many powdery mildew resistance genes. We report here the positional cloning and functional characterization of Pm41, a powdery mildew resistance gene derived from WEW, which encodes a coiled-coil, nucleotide-binding site and leucine-rich repeat protein (CNL). Mutagenesis and stable genetic transformation confirmed the function of Pm41 against Bgt infection in wheat. We demonstrated that Pm41 was present at a very low frequency (1.81%) only in southern WEW populations. It was absent in other WEW populations, domesticated emmer, durum, and common wheat, suggesting that the ancestral Pm41 was restricted to its place of origin and was not incorporated into domesticated wheat. Our findings emphasize the importance of conservation and exploitation of the primary WEW gene pool, as a valuable resource for discovery of resistance genes for improvement of modern wheat cultivars.


Asunto(s)
Ascomicetos , Triticum , Ascomicetos/genética , Resistencia a la Enfermedad/genética , Genes de Plantas , Enfermedades de las Plantas , Triticum/genética
7.
New Phytol ; 228(3): 1011-1026, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32569398

RESUMEN

Powdery mildew poses severe threats to wheat production. The most sustainable way to control this disease is through planting resistant cultivars. We report the map-based cloning of the powdery mildew resistance allele Pm5e from a Chinese wheat landrace. We applied a two-step bulked segregant RNA sequencing (BSR-Seq) approach in developing tightly linked or co-segregating markers to Pm5e. The first BSR-Seq used phenotypically contrasting bulks of recombinant inbred lines (RILs) to identify Pm5e-linked markers. The second BSR-Seq utilized bulks of genetic recombinants screened from a fine-mapping population to precisely quantify the associated genomic variation in the mapping interval, and identified the Pm5e candidate genes. The function of Pm5e was validated by transgenic assay, loss-of-function mutants and haplotype association analysis. Pm5e encodes a nucleotide-binding domain leucine-rich-repeat-containing (NLR) protein. A rare nonsynonymous single nucleotide variant (SNV) within the C-terminal leucine rich repeat (LRR) domain is responsible for the gain of powdery mildew resistance function of Pm5e, an allele endemic to wheat landraces of Shaanxi province of China. Results from this study demonstrate the value of landraces in discovering useful genes for modern wheat breeding. The key SNV associated with powdery mildew resistance will be useful for marker-assisted selection of Pm5e in wheat breeding programs.


Asunto(s)
Resistencia a la Enfermedad , Triticum , China , Resistencia a la Enfermedad/genética , Genes de Plantas , Nucleótidos , Fitomejoramiento , Enfermedades de las Plantas/genética , Triticum/genética
8.
Gigascience ; 9(6)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32562491

RESUMEN

BACKGROUND: Polyploidy is centrally important in the evolution and domestication of plants because it leads to major genomic changes, such as altered patterns of gene expression, which are thought to underlie the emergence of new traits. Despite the common occurrence of these globally altered patterns of gene expression in polyploids, the mechanisms involved are not well understood. RESULTS: Using a precisely defined framework of highly conserved syntenic genes on hexaploid wheat chromosome 3DL and its progenitor 3 L chromosome arm of diploid Aegilops tauschii, we show that 70% of these gene pairs exhibited proportionately reduced gene expression, in which expression in the hexaploid context of the 3DL genes was ∼40% of the levels observed in diploid Ae tauschii. Several genes showed elevated expression during the later stages of grain development in wheat compared with Ae tauschii. Gene sequence and methylation differences probably accounted for only a few cases of differences in gene expression. In contrast, chromosome-wide patterns of reduced chromatin accessibility of genes in the hexaploid chromosome arm compared with its diploid progenitor were correlated with both reduced gene expression and the imposition of new patterns of gene expression. CONCLUSIONS: Our pilot-scale analyses show that chromatin compaction may orchestrate reduced gene expression levels in the hexaploid chromosome arm of wheat compared to its diploid progenitor chromosome arm.


Asunto(s)
Aegilops/genética , Ensamble y Desensamble de Cromatina , Cromatina/genética , Cromosomas de las Plantas , Regulación de la Expresión Génica de las Plantas , Ploidias , Triticum/genética , Cromatina/metabolismo , Biología Computacional/métodos , Metilación de ADN , Evolución Molecular , Genoma de Planta , Genómica/métodos , Seudogenes
9.
Theor Appl Genet ; 133(9): 2545-2554, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32494869

RESUMEN

KEY MESSAGE: A locus for perennial growth was mapped on Lophopyrum elongatum chromosome arm 4ES and introgressed into the wheat genome. Evidence was obtained that in addition to chromosome 4E, other L. elongatum chromosomes control perennial growth. Monocarpy versus polycarpy is one of the fundamental developmental dichotomies in flowering plants. Advances in the understanding of the genetic basis of this dichotomy are important for basic biological reasons and practically for genetic manipulation of growth development in economically important plants. Nine wheat introgression lines (ILs) harboring germplasm of the Lophopyrum elongatum genome present in the octoploid amphiploid Triticum aestivum cv. Chinese Spring (subgenomes AABBDD) × L. elongatum (genomes EE) were selected from a population of ILs developed earlier. These ILs were employed here in genomic analyses of post-sexual cycle regrowth (PSCR), which is a component of polycarpy in caespitose L. elongatum. Analyses of disomic substitution (DS) lines confirmed that L. elongatum chromosome 4E confers PSCR on wheat. The gene was mapped into a short distal region of L. elongatum arm 4ES and was tentatively named Pscr1. ILs harboring recombined chromosomes with 4ES segments, including Pscr1, incorporated into the distal part of the 4DS chromosome arm were identified. Based on the location, Pscr1 is not orthologous with the rice rhizome-development gene Rhz2 located on rice chromosome Os3, which is homoeologous with chromosome 4E, but it may correspond to the Teosinte branched1 (TB1) gene, which is located in the introgressed region in the L. elongatum and Ae. tauschii genomes. A hexaploid IL harboring a large portion of the E-genome but devoid of chromosome 4E also expressed PSCR, which provided evidence that perennial growth is controlled by genes on other L. elongatum chromosomes in addition to 4E.


Asunto(s)
Genes de Plantas , Fitomejoramiento , Poaceae/crecimiento & desarrollo , Triticum/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Genotipo , Poaceae/genética , Polimorfismo de Nucleótido Simple , Poliploidía
10.
Nat Commun ; 11(1): 680, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-32015344

RESUMEN

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most destructive diseases that pose a great threat to wheat production. Wheat landraces represent a rich source of powdery mildew resistance. Here, we report the map-based cloning of powdery mildew resistance gene Pm24 from Chinese wheat landrace Hulutou. It encodes a tandem kinase protein (TKP) with putative kinase-pseudokinase domains, designated WHEAT TANDEM KINASE 3 (WTK3). The resistance function of Pm24 was validated by transgenic assay, independent mutants, and allelic association analyses. Haplotype analysis revealed that a rare 6-bp natural deletion of lysine-glycine codons, endemic to wheat landraces of Shaanxi Province, China, in the kinase I domain (Kin I) of WTK3 is critical for the resistance function. Transgenic assay of WTK3 chimeric variants revealed that only the specific two amino acid deletion, rather than any of the single or more amino acid deletions, in the Kin I of WTK3 is responsible for gaining the resistance function of WTK3 against the Bgt fungus.


Asunto(s)
Resistencia a la Enfermedad/genética , Mutación con Ganancia de Función , Genes de Plantas/genética , Enfermedades de las Plantas/microbiología , Triticum/genética , Ascomicetos/patogenicidad , China , Peróxido de Hidrógeno/metabolismo , Mutagénesis , Inmunidad de la Planta/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Dominios Proteicos , Proteínas Quinasas/genética , Transformación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA