Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(27): e2402143121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38923993

RESUMEN

The non-neural cholinergic system plays a critical role in regulating immune equilibrium and tissue homeostasis. While the expression of choline acetyltransferase (ChAT), the enzyme catalyzing acetylcholine biosynthesis, has been well documented in lymphocytes, its role in the myeloid compartment is less understood. Here, we identify a significant population of macrophages (Mϕs) expressing ChAT and synthesizing acetylcholine in the resolution phase of acute peritonitis. Using Chat-GFP reporter mice, we observed marked upregulation of ChAT in monocyte-derived small peritoneal Mϕs (SmPMs) in response to Toll-like receptor agonists and bacterial infections. These SmPMs, phenotypically and transcriptionally distinct from tissue-resident large peritoneal macrophages, up-regulated ChAT expression through a MyD88-dependent pathway involving MAPK signaling. Notably, this process was attenuated by the TRIF-dependent TLR signaling pathway, and our tests with a range of neurotransmitters and cytokines failed to induce a similar response. Functionally, Chat deficiency in Mϕs led to significantly decreased peritoneal acetylcholine levels, reduced efferocytosis of apoptotic neutrophils, and a delayed resolution of peritonitis, which were reversible with exogenous ACh supplementation. Intriguingly, despite B lymphocytes being a notable ChAT-expressing population within the peritoneal cavity, Chat deletion in B cells did not significantly alter the resolution process. Collectively, these findings underscore the crucial role of Mϕ-derived acetylcholine in the resolution of inflammation and highlight the importance of the non-neuronal cholinergic system in immune regulation.


Asunto(s)
Acetilcolina , Colina O-Acetiltransferasa , Macrófagos Peritoneales , Peritonitis , Animales , Colina O-Acetiltransferasa/metabolismo , Colina O-Acetiltransferasa/genética , Peritonitis/inmunología , Peritonitis/metabolismo , Ratones , Macrófagos Peritoneales/metabolismo , Macrófagos Peritoneales/inmunología , Acetilcolina/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Ratones Endogámicos C57BL , Transducción de Señal , Inflamación/metabolismo , Inflamación/patología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Receptores Toll-Like/metabolismo , Fagocitosis , Macrófagos/metabolismo , Macrófagos/inmunología , Ratones Noqueados
2.
Front Pharmacol ; 15: 1287262, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38464724

RESUMEN

Background: The CONSORT Extension for Chinese Herbal Medicine Formula 2017 (CONSORT-CHM Formula 2017) has established a reporting standard for randomized controlled trials (RCTs) of Chinese Herbal Medicine Formula (CHMF) interventions; however, its adherence and implications for the design and execution of study design remain ambiguous. It is necessary to evaluate the level of compliance with the CONSORT-CHM Formula 2017 in RCTs conducted over the past 5 years, and to determine the reporting quality of clinical trials in this field. Methods: First, a systematic search is conducted for RCTs on CHMF in EBM Reviews, Allied and Complementary Medicine (AMED), Embase, Ovid-MEDLINE(R), Wanfang data, China National Knowledge Infrastructure (CNKI), VIP Chinese Medical Journal Database (VIP) and Chinese Biomedical Literature (CBM) database, that encompassed CHMF interventional RCTs published from 1 January 2018 to 8 June 2022, with language restriction to English or Chinese. Second, a descriptive analysis will be performed regarding the study design and general characteristics of the included trials. Third, for the quality assessment, we have subdivided the CONSORT-CHM Formula 2017 checklist (consisting of 22 extended items) into a total of 42 sub-questions to facilitate scoring, with a specific focus on the description, quality control, and safety assessment of CHMF interventions. Professional training and a pilot test on 100 randomly selected articles will be provided for all reviewers. Throughout this process, a standard operating procedure (SOP) for quality assessment will be developed to ensure consistency. Each item will be assessed by two reviewers in a paired back-to-back manner, and the compliance rate will be calculated to assess inter-rater agreement. Discussion: This review will identify the current reporting characteristics and quality of CHMF interventional studies and further evaluate the impact of CONSORT-CHM Formula 2017. The results may provide suggestions for future application or promotion of the guideline. Registration: The study has been registered on Open Science Framework (https://osf.io/xpn7f).

4.
J Exp Med ; 219(4)2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35266960

RESUMEN

The spleen is an important site of hematopoietic stem/progenitor cell (HSPC) preconditioning and tumor-promoting myeloid cell generation in cancer, but the regulatory mechanism remains unclear. Here, we found that PKR-like endoplasmic reticulum kinase (PERK) mediated HSPC reprogramming into committed MDSC precursors in the spleen via PERK-ATF4-C/EBPß signaling. Pharmacological and genetic inhibition of this pathway in murine and human HSPCs prevented their myeloid descendant cells from becoming MDSCs even with subsequent exposure to tumor microenvironment (TME) factors. In mice, the selective delivery of PERK antagonists to the spleen was not only sufficient but more effective than the tumor-targeted strategy in preventing MDSC activation in the tumor, leading to profound TME reshaping and tumor regression. Clinically, HSPCs in the spleen of cancer patients exhibit increased PERK signaling correlated with enhanced myelopoiesis. Our findings indicate that PERK-mediated HSPC preconditioning plays a crucial role in MDSC generation, suggesting novel spleen-targeting therapeutic opportunities for restraining the tumor-promoting myeloid response at its source.


Asunto(s)
Mielopoyesis , Neoplasias , Animales , Retículo Endoplásmico , Células Madre Hematopoyéticas/metabolismo , Humanos , Ratones , Neoplasias/metabolismo , Piruvato Quinasa/metabolismo , Bazo , Microambiente Tumoral , eIF-2 Quinasa
5.
Front Immunol ; 12: 654094, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33936078

RESUMEN

Under stress conditions, hematopoietic stem and progenitor cells (HSPCs) can translate danger signals into a plethora of cytokine signals. These cytokines, or more precisely their combination, instruct HSPCs to modify the magnitude and composition of hematopoietic output in response to the threat, but investigations into the heterogeneous cytokine expression and regulatory mechanisms are hampered by the technical difficulty of measuring cytokine levels in HSPCs at the single-cell level. Here, we optimized a flow cytometry-based method for the simultaneous assessment of multiple intracellular cytokines in HSPCs. By selecting an optimal combination of cytokine restimulation reagents, protein transport inhibitors, and culture supplements, an optimized restimulation protocol for intracellular staining was developed. Using this method, we successfully examined expression levels of granulocyte/macrophage colony-stimulating factor (GM-CSF), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in murine and human HSPC subsets under steady-state or different stress conditions. Different cytokine expression patterns were observed, suggesting distinct regulatory modes of cytokine production dependent on the HSPC subset, cytokine, disease, organ, and species. Collectively, this technical advance may help to obtain a better understanding of the nature of HSPC heterogeneity on the basis of differential cytokine production.


Asunto(s)
Citocinas/biosíntesis , Células Madre Hematopoyéticas/metabolismo , Transducción de Señal , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular , Células Cultivadas , Citocinas/genética , Citometría de Flujo , Expresión Génica , Células Madre Hematopoyéticas/citología , Humanos , Inmunohistoquímica , Inmunofenotipificación , Ratones , Mielopoyesis/genética
6.
Front Immunol ; 12: 609295, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33717093

RESUMEN

Recent studies have demonstrated that splenic extramedullary hematopoiesis (EMH) is an important mechanism for the accumulation of myeloid-derived suppressor cells (MDSCs) in tumor tissues, and thus contributes to disease progression. Icaritin, a prenylflavonoid derivative from plants of the Epimedium genus, has been implicated as a novel immune-modulator that could prolong the survival of hepatocellular carcinoma (HCC) patients. However, it is unclear whether icaritin achieves its anti-tumor effects via the regulation of MDSCs generated by EMH in HCC. Here, we investigated the anti-tumor potential of icaritin and its mechanism of action in murine HCC. Icaritin suppressed tumor progression and significantly prolonged the survival of mice-bearing orthotopic and subcutaneous HCC tumors. Rather than exerting direct cytotoxic activity against tumor cells, icaritin significantly reduced the accumulation and activation of tumoral and splenic MDSCs, and increased the number and activity of cytotoxic T cells. Mechanistically, icaritin downregulates the tumor-associated splenic EMH, thereby reducing the generation and activation of MDSCs. The inhibitory effects of icaritin on human MDSCs in vitro were verified in short-term culture with cord-blood derived hematopoietic precursors. Furthermore, icaritin synergistically enhanced the therapeutic efficacy of immune checkpoint blockade therapy in HCC mice. These findings revealed that icaritin dampens tumoral immunosuppression to elicit anti-tumor immune responses by preventing MDSC generation via the attenuation of EMH. Thus, icaritin may serve as a novel adjuvant or even a stand-alone therapeutic agent for the effective treatment of HCC.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Flavonoides/farmacología , Inmunomodulación/efectos de los fármacos , Células Supresoras de Origen Mieloide/efectos de los fármacos , Células Supresoras de Origen Mieloide/inmunología , Animales , Biomarcadores , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Sangre Fetal/citología , Humanos , Inmunofenotipificación , Estimación de Kaplan-Meier , Neoplasias Hepáticas , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Ratones , Células Supresoras de Origen Mieloide/metabolismo , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
7.
J Clin Invest ; 130(9): 4679-4693, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32497024

RESUMEN

BACKGROUNDDespite an increasing appreciation of the roles that myeloid cells play in tumor progression and therapy, challenges remain in interpreting the tumor-associated myeloid response balance and its translational value. We aimed to construct a simple and reliable myeloid signature for hepatocellular carcinoma (HCC).METHODSUsing in situ immunohistochemistry, we assessed the distribution of major myeloid subtypes in both peri- and intratumoral regions of HCC. A 2-feature-based, myeloid-specific prognostic signature, named the myeloid response score (MRS), was constructed using an L1-penalized Cox regression model based on data from a training subset (n = 244), a test subset (n = 244), and an independent internal (n = 341) and 2 external (n = 94; n = 254) cohorts.RESULTSThe MRS and the MRS-based nomograms displayed remarkable discriminatory power, accuracy, and clinical usefulness for predicting recurrence and patient survival, superior to current staging algorithms. Moreover, an increase in MRS was associated with a shift in the myeloid response balance from antitumor to protumor activities, accompanied by enhanced CD8+ T cell exhaustion patterns. Additionally, we provide evidence that the MRS was associated with the efficacy of sorafenib treatment for recurrent HCC.CONCLUSIONWe identified and validated a simple myeloid signature for HCC that showed remarkable prognostic potential and may serve as a basis for the stratification of HCC immune subtypes.FUNDINGThis work was supported by the National Science and Technology Major Project of China, the National Natural Science Foundation of China, the Science and Information Technology of Guangzhou, the Fundamental Research Funds for the Central Universities, the Guangdong Basic and Applied Basic Research Foundation, and the China Postdoctoral Science Foundation.


Asunto(s)
Biomarcadores de Tumor/inmunología , Carcinoma Hepatocelular , Regulación Neoplásica de la Expresión Génica/inmunología , Neoplasias Hepáticas , Células Mieloides , Sorafenib/administración & dosificación , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Supervivencia sin Enfermedad , Femenino , Perfilación de la Expresión Génica , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Masculino , Persona de Mediana Edad , Células Mieloides/inmunología , Células Mieloides/patología , Tasa de Supervivencia
8.
J Clin Invest ; 128(8): 3425-3438, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29771686

RESUMEN

Cancer progression is associated with alterations of intra- and extramedullary hematopoiesis to support a systemic tumor-promoting myeloid response. However, the functional specialty, mechanism, and clinical relevance of extramedullary hematopoiesis (EMH) remain unclear. Here, we showed that the heightened splenic myelopoiesis in tumor-bearing hosts was not only characterized by the accumulation of myeloid precursors, but also associated with profound functional alterations of splenic early hematopoietic stem/progenitor cells (HSPCs). With the distinct capability to produce and respond to granulocyte-macrophage CSF (GM-CSF), these splenic HSPCs were "primed" and committed to generating immunosuppressive myeloid cells. Mechanistically, the CCL2/CCR2 axis-dependent recruitment and the subsequent local education by the splenic stroma were critical for eliciting this splenic HSPC response. Selective abrogation of this splenic EMH was sufficient to synergistically enhance the therapeutic efficacy of immune checkpoint blockade. Clinically, patients with different types of solid tumors exhibited increased splenic HSPC levels associated with poor survival. These findings reveal a unique and important role of splenic hematopoiesis in tumor-associated myelopoiesis.


Asunto(s)
Hematopoyesis Extramedular/inmunología , Células Madre Hematopoyéticas/inmunología , Células Mieloides/inmunología , Mielopoyesis/inmunología , Neoplasias Experimentales/inmunología , Bazo/inmunología , Animales , Células Madre Hematopoyéticas/patología , Ratones , Células Mieloides/patología , Neoplasias Experimentales/patología , Neoplasias Experimentales/terapia , Bazo/patología
9.
J Cell Physiol ; 202(2): 464-73, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15389584

RESUMEN

Interleukin-1beta (IL-1beta) has been shown to induce the expression of intercellular adhesion molecule-1 (ICAM-1) on airway epithelial cells and contributes to inflammatory responses. However, the mechanisms regulating ICAM-1 expression by IL-1beta in human A549 cells was not completely understood. Here, the roles of mitogen-activated protein kinases (MAPKs) and NF-kappaB pathways for IL-1beta-induced ICAM-1 expression were investigated in A549 cells. IL-1beta induced expression of ICAM-1 protein and mRNA in a time- and concentration-dependent manner. The IL-1beta induction of ICAM-1 mRNA and protein were partially inhibited by U0126 and PD98059 (specific inhibitors of MEK1/2) and SP600125 [a specific inhibitor of c-Jun-N-terminal kinase (JNK)]. U0126 was more potent than other inhibitors to attenuate IL-1beta-induced ICAM-1 expression. Consistently, IL-1beta stimulated phosphorylation of p42/p44 MAPK and JNK which was attenuated by pretreatment with U0126 or SP600125, respectively. Moreover, transfection with dominant negative mutants of MEK1/2 (MEK K97R) or ERK2 (ERK2 K52R) also attenuated IL-1beta-induced ICAM-1 expression. The combination of PD98059 and SP600125 displayed an additive effect on IL-1beta-induced ICAM-1 gene expression. IL-1beta-induced ICAM-1 expression was almost completely blocked by a specific NF-kappaB inhibitor helenalin. Consistently, IL-1beta stimulated translocation of NF-kappaB into the nucleus and degradation of IkappaB-alpha which was blocked by helenalin, U0126, or SP600125. Taken together, these results suggest that activation of p42/p44 MAPK and JNK cascades, at least in part, mediated through NF-kappaB pathway is essential for IL-1beta-induced ICAM-1 gene expression in A549 cells. These results provide new insight into the mechanisms of IL-1beta action that cytokines may promote inflammatory responses in the airway disease.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Interleucina-1/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Alveolos Pulmonares/metabolismo , Línea Celular Tumoral , Sinergismo Farmacológico , Inhibidores Enzimáticos/farmacología , Células Epiteliales/metabolismo , Humanos , Molécula 1 de Adhesión Intercelular/efectos de los fármacos , Molécula 1 de Adhesión Intercelular/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , FN-kappa B/antagonistas & inhibidores , Fosforilación , Alveolos Pulmonares/patología , ARN Mensajero/metabolismo , Sesquiterpenos/farmacología , Sesquiterpenos de Guayano
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA