Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Front Bioeng Biotechnol ; 11: 1242797, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37941723

RESUMEN

Micro- and nano-plastics (MNPs) are global contaminants of growing concern to the ecosystem and human health. In-the-field detection and identification of environmental micro- and nano-plastics (e-MNPs) is critical for monitoring the spread and effects of e-MNPs but is challenging due to the dearth of suitable analytical techniques, especially in the sub-micron size range. Here we show that thin gold films patterned with a dense, hexagonal array of ring-shaped nanogaps (RSNs) can be used as active substrates for the sensitive detection of micro- and nano-plastics by surface-enhanced Raman spectroscopy (SERS), requiring only small sample volumes and no significant sample preparation. By drop-casting 0.2-µL aqueous test samples onto the SERS substrates, 50-nm polystyrene (PS) nanoparticles could be determined via Raman spectroscopy at concentrations down to 1 µg/mL. The substrates were successfully applied to the detection and identification of ∼100-nm polypropylene e-MNPs in filtered drinking water and ∼100-nm polyethylene terephthalate (PET) e-MNPs in filtered wash-water from a freshly cleaned PET-based infant feeding bottle.

2.
Molecules ; 28(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37446661

RESUMEN

Cellulose membranes have eco-friendly, renewable, and cost-effective features, but they lack satisfactory cycle stability as a sustainable separator for batteries. In this study, a two-step method was employed to prepare a sandwich-like composite membrane of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)/cellulose/ PVDF-HFP (PCP). The method involved first dissolving and regenerating a cellulose membrane and then electrospinning PVDF-HFP on its surface. The resulting PCP composite membrane exhibits excellent properties such as high porosity (60.71%), good tensile strength (4.8 MPa), and thermal stability up to 160 °C. It also has exceptional electrolyte uptake properties (710.81 wt.%), low interfacial resistance (241.39 Ω), and high ionic conductivity (0.73 mS/cm) compared to commercial polypropylene (PP) separators (1121.4 Ω and 0.26 mS/cm). Additionally, the rate capability (163.2 mAh/g) and cycling performance (98.11% after 100 cycles at 0.5 C) of the PCP composite membrane are superior to those of PP separators. These results demonstrate that the PCP composite membrane has potential as a promising separator for high-powered, secure lithium-ion batteries.


Asunto(s)
Celulosa , Litio , Iones , Membranas , Polipropilenos
3.
Mater Today Bio ; 20: 100628, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37122839

RESUMEN

Sustained drug release has attracted increasing interest in targeted drug therapy. However, existing methods of drug therapy suffer drug action time, large fluctuations in the effective concentration of the drug, and the risk of side effects. Here, a biodegradable composite of polybutylene adipate co-terephthalate/polyvinylpyrrolidone (PBAT/PVP) consisting of electrospun hollow microspheres as sustained-released drug carriers is presented. The as-prepared PBAT/PVP composites show faster degradation rate and drug (Erlotinib) release than that of PBAT. Furthermore, PBAT/PVP composites loaded with Erlotinib provide sustained release effect, thus achieving a better efficacy than that after the direct injection of erlotinib due to the fact that the composites allow a high drug concentration in the tumor for a longer period. Hence, this work provides a potential effective solution for clinical drug therapy and tissue engineering using drug microspheres with a sustained release.

4.
Adv Mater ; : e2300058, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37229613

RESUMEN

Template-patterned, flexible transparent electrodes (TEs) formed from an ultrathin silver film on top of a commercial optical adhesive - Norland Optical Adhesive 63 (NOA63) - are reported. NOA63 is shown to be an effective base-layer for ultrathin silver films that advantageously prevents coalescence of vapor-deposited silver atoms into large, isolated islands (Volmer-Weber growth), and so aids the formation of ultrasmooth continuous films. 12 nm silver films on top of free-standing NOA63 combine high, haze-free visible-light transparency (T ≈ 60% at 550 nm) with low sheet-resistance ( R s ${\mathcal{R}}_s$ ≈ 16 Ω sq-1 ), and exhibit excellent resilience to bending, making them attractive candidates for flexible TEs. Etching the NOA63 base-layer with an oxygen plasma before silver deposition causes the silver to laterally segregate into isolated pillars, resulting in a much higher sheet resistance ( R s ${\mathcal{R}}_{s}$  > 8 × 106 Ω sq-1 ) than silver grown on pristine NOA63 . Hence, by selectively etching NOA63 before metal deposition, insulating regions may be defined within an otherwise conducting silver film, resulting in a differentially conductive film that can serve as a patterned TE for flexible devices. Transmittance may be increased (to 79% at 550 nm) by depositing an antireflective layer of Al2 O3 on the Ag layer at the cost of reduced flexibility.

5.
Environ Sci Technol ; 57(22): 8365-8372, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37220668

RESUMEN

Micro/nanoplastics have emerged as global contaminants of serious concern to human and ecosystem health. However, identification and visualization of microplastics and particularly nanoplastics have remained elusive due to the lack of feasible and reliable analytical approaches, particularly for trace nanoplastics. Here, an efficient surface-enhanced Raman spectroscopy (SERS)-active substrate with triangular cavity arrays is reported. The fabricated substrate exhibited high SERS performance for standard polystyrene (PS) nanoplastic detection with size down to 50 nm and a detection limit of 0.001% (1.5 × 1011 particles/mL). Poly(ethylene terephthalate) (PET) nanoplastics collected from commercially bottled drinking water were detected with an average mean size of ∼88.2 nm. Furthermore, the concentration of the collected sample was estimated to be about 108 particles/mL by nanoparticle tracking analysis (NTA), and the annual nanoplastic consumption of human beings through bottled drinking water was also estimated to be about 1014 particles, assuming water consumption of 2 L/day for adults. The facile and highly sensitive SERS substrate provides more possibilities for detecting trace nanoplastics in an aquatic environment with high sensitivity and reliability.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Humanos , Microplásticos , Plásticos/análisis , Agua Potable/análisis , Tereftalatos Polietilenos , Espectrometría Raman , Reproducibilidad de los Resultados , Ecosistema , Contaminantes Químicos del Agua/análisis , Poliestirenos , Etilenos/análisis
6.
Nanomaterials (Basel) ; 12(21)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36364618

RESUMEN

Applicable surface-enhanced Raman scattering (SERS) active substrates typically require low-cost patterning methodology, high reproducibility, and a high enhancement factor (EF) over a large area. However, the lack of reproducible, reliable fabrication for large area SERS substrates in a low-cost manner remains a challenge. Here, a patterning method based on nanosphere lithography and adhesion lithography is reported that allows massively parallel fabrication of 10-nm annular gap arrays on large areas. The arrays exhibit excellent reproducibility and high SERS performance, with an EF of up to 107. An effective wearable SERS contact lens for glucose detection is further demonstrated. The technique described here extends the range of SERS-active substrates that can be fabricated over large areas, and holds exciting potential for SERS-based chemical and biomedical detection.

7.
ACS Nano ; 16(5): 7438-7447, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35381178

RESUMEN

Squeezing light into nanometer-sized metallic nanogaps can generate extremely high near-field intensities, resulting in dramatically enhanced absorption, emission, and Raman scattering of target molecules embedded within the gaps. However, the scarcity of low-cost, high-throughput, and reproducible nanogap fabrication methods offering precise control over the gap size is a continuing obstacle to practical applications. Using a combination of molecular self-assembly, colloidal nanosphere lithography, and physical peeling, we report here a high-throughput method for fabricating large-area arrays of triangular nanogaps that allow the gap width to be tuned from ∼10 to ∼3 nm. The nanogap arrays function as high-performance substrates for surface-enhanced Raman spectroscopy (SERS), with measured enhancement factors as high as 108 relative to a thin gold film. Using the nanogap arrays, methylene blue dye molecules can be detected at concentrations as low as 1 pM, while adenine biomolecules can be detected down to 100 pM. We further show that it is possible to achieve sensitive SERS detection on binary-metal nanogap arrays containing gold and platinum, potentially extending SERS detection to the investigation of reactive species at platinum-based catalytic and electrochemical surfaces.

8.
Adv Sci (Weinh) ; 8(24): e2102756, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34719889

RESUMEN

Metallic nanogaps with metal-metal separations of less than 10 nm have many applications in nanoscale photonics and electronics. However, their fabrication remains a considerable challenge, especially for applications that require patterning of nanoscale features over macroscopic length-scales. Here, some of the most promising techniques for nanogap fabrication are evaluated, covering established technologies such as photolithography, electron-beam lithography (EBL), and focused ion beam (FIB) milling, plus a number of newer methods that use novel electrochemical and mechanical means to effect the patterning. The physical principles behind each method are reviewed and their strengths and limitations for nanogap patterning in terms of resolution, fidelity, speed, ease of implementation, versatility, and scalability to large substrate sizes are discussed.

9.
Appl Opt ; 60(17): 5124-5133, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34143079

RESUMEN

Aero-engine blades are an integral part of the aero-engine, and the integrity of these blades affects the flight performance and safety performance of an aircraft. The traditional manual detection method is time-consuming, labor-intensive, and inefficient. Hence, it is particularly important to use intelligent detection methods to detect and identify damage. In order to quickly and accurately identify the damage of the aero-engine blades, the present study proposes a network based on the Improved Cascade Mask R-CNN network-to establish the damage related to the aero-engine blades and detection models. The model can identify the damage type and locate and segment the area of damage. Furthermore, the accuracy rate can reach up to 98.81%, the Bbox-mAP is 78.7%, and the Segm-mAP is 77.4%. In comparing the Improved Cascade Mask R-CNN network with the YOLOv4, Cascade R-CNN, Res2Net, and Cascade Mask R-CNN networks, the results revealed that the network used in the present is excellent and effective.

10.
Adv Mater ; 33(20): e2100491, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33939199

RESUMEN

Metallic nanogaps (MNGs) are fundamental components of nanoscale photonic and electronic devices. However, the lack of reproducible, high-yield fabrication methods with nanometric control over the gap-size has hindered practical applications. A patterning technique based on molecular self-assembly and physical peeling is reported here that allows the gap-width to be tuned from more than 30 nm to less than 3 nm. The ability of the technique to define sub-3-nm gaps between dissimilar metals permits the easy fabrication of molecular rectifiers, in which conductive molecules bridge metals with differing work functions. A method is further described for fabricating massively parallel nanogap arrays containing hundreds of millions of ring-shaped nanogaps, in which nanometric size control is maintained over large patterning areas of up to a square centimeter. The arrays exhibit strong plasmonic resonances under visible light illumination and act as high-performance substrates for surface-enhanced Raman spectroscopy, with high enhancement factors of up to 3 × 108 relative to thin gold films. The methods described here extend the range of metallic nanostructures that can be fabricated over large areas, and are likely to find many applications in molecular electronics, plasmonics, and biosensing.

11.
ACS Appl Mater Interfaces ; 12(31): 35572-35578, 2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32639144

RESUMEN

Despite the remarkable advances in mitigating ice formation and accretion, however, no engineered anti-icing surfaces today can durably prevent frost formation, droplet freezing, and ice accretion in an economical and ecofriendly way. Herein, sustainable and low-cost electrolyte hydrogel (EH) surfaces are developed by infusing salted water into a hydrogel matrix for avoiding icing. The EH surfaces can both prevent ice/frost formation for an extremely long time and reduce ice adhesion strength to ultralow value (Pa-level) at a tunable temperature window down to -48.4 °C. Furthermore, ice can self-remove from the tilted EH surface within 10 s at -10 °C by self-gravity. As demonstrated by both molecular dynamic simulations and experiments, these extreme performances are attributed to the diffusion of ions to the interface between EH and ice. The sustainable anti-icing properties of EH can be maintained by replenishing in real-time with available ion sources, indicating the promising applications in offshore platforms and ships.

12.
J Hazard Mater ; 390: 122176, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32006849

RESUMEN

The fundamental mechanism behind oil/water separation materials is their surface wettability that allows either oil or water to pass through. The conventional materials for oil/water separation generally have extreme wettability, namely superhydrophilic for water separation and superhydrophobic for oil separation. Using easily accessible materials that are medium hydrophobic or even relatively hydrophilic for preparing highly efficient oil/water separators have rarely been reported. In this work, a new strategy by triggering phase transition of infused lubricant from liquid to solid state in porous structure is realized in fabricating slippery lubricant infused porous structure for oil/water separations. By infusing polyester fabric with coconut oil, after phase transition, excellent water repellency and oil permeability by an absorbing-permeating mechanism are achieved, despite the low water contact angle on the new material. Although the new phase transformable slippery lubricant infused porous structure, features much milder hydrophobicity than conventional oil/water separators, it can remove diverse types of oil from water with high efficiencies. The phase transformable slippery lubricant infused porous structure is able to maintain their water repellency after immersing in high concentration salt (10 wt% NaCl), acid (25 % HCl), alkaline (25 % NH3·H2O) solutions for 120 h, showing remarkably functional durability in harsh environment. The lubricant phase transition mechanism proposed in this study is universally applicable to porous substrates with various chemical compositions and pore structures, such as porous sponges or even daily life breads, for creating efficient oil/water separators, which can serve as a novel accessible design principle of phase transformable slippery lubricant infused porous structure for eco-friendly oil/water separators.

13.
Materials (Basel) ; 12(22)2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-31752327

RESUMEN

In this paper, the effect of residual stress on the stress-life (S-N) curve and fracture morphology characteristics of Ti6Al4V titanium alloy after laser shock peening (LSP) without protective coating was experimentally investigated. The fatigue test and residual stress measurement were conducted on specimens before and after the LSP process. It was shown that LSP produced a high-amplitude compressive residual stress field on the surface of the specimen. After the LSP process, the fatigue life limit was increased by 16%, and the S-N curve shifted upward. Then, based on the theory of mean stress, the mechanism whereby the compressive residual stress improves the fatigue life of Ti6Al4V titanium alloy was analyzed. It indicated the improvement in fatigue life was because of the high-amplitude compressive residual stress on the surface and in depth induced by LSP to reduce the tensile stress produced by external loading. In addition, the scanning electron microscope (SEM) pattern of fatigue fracture demonstrated distinct differences in the fracture morphology before and after LSP. After LSP, the crack initiation sites of the samples moved to the subsurface where it was difficult for fatigue cracks initiating here. Moreover, after the LSP process, there were high density of fatigue striations and many secondary cracks on the fracture of the treated specimen.

14.
Materials (Basel) ; 12(8)2019 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-31022993

RESUMEN

The residual stress introduced by laser shock peening (LSP) is one of the most important factors in improving metallic fatigue life. The shock wave pressure has considerable influence on residual stress distribution, which is affected by the distribution of laser energy. In this work, a titanium alloy is treated by LSP with flat-top and Gaussian laser beams, and the effects of spatial energy distribution on residual stress are investigated. Firstly, a 3D finite element model (FEM) is developed to predict residual stress with different spatial energy distribution, and the predicted residual stress is validated by experimental data. Secondly, three kinds of pulse energies, 3 J, 4 J and 5 J, are chosen to study the difference of residual stress introduced by flat-top and Gaussian laser beams. Lastly, the effect mechanism of spatial energy distribution on residual stress is revealed.

15.
Materials (Basel) ; 11(4)2018 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-29642379

RESUMEN

As an innovative surface technology for ultrahigh strain-rate plastic deformation, laser shock peening (LSP) was applied to the dual-phase TC11 titanium alloy to fabricate an amorphous and nanocrystalline surface layer at room temperature. X-ray diffraction, transmission electron microscopy, and high-resolution transmission electron microscopy (HRTEM) were used to investigate the microstructural evolution, and the deformation mechanism was discussed. The results showed that a surface nanostructured surface layer was synthesized after LSP treatment with adequate laser parameters. Simultaneously, the behavior of dislocations was also studied for different laser parameters. The rapid slipping, accumulation, annihilation, and rearrangement of dislocations under the laser-induced shock waves contributed greatly to the surface nanocrystallization. In addition, a 10 nm-thick amorphous structure layer was found through HRTEM in the top surface and the formation mechanism was attributed to the local temperature rising to the melting point, followed by its subsequent fast cooling.

16.
Sci Technol Adv Mater ; 14(5): 055010, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27877617

RESUMEN

We investigated the strengthening mechanism of laser shock processing (LSP) at high temperatures in the K417 nickel-based alloy. Using a laser-induced shock wave, residual compressive stresses and nanocrystals with a length of 30-200 nm and a thickness of 1 µm are produced on the surface of the nickel-based alloy K417. When the K417 alloy is subjected to heat treatment at 900 °C after LSP, most of the residual compressive stress relaxes while the microhardness retains good thermal stability; the nanocrystalline surface has not obviously grown after the 900 °C per 10 h heat treatment, which shows a comparatively good thermal stability. There are several reasons for the good thermal stability of the nanocrystalline surface, such as the low value of cold hardening of LSP, extreme high-density defects and the grain boundary pinning of an impure element. The results of the vibration fatigue experiments show that the fatigue strength of K417 alloy is enhanced and improved from 110 to 285 MPa after LSP. After the 900 °C per 10 h heat treatment, the fatigue strength is 225 MPa; the heat treatment has not significantly reduced the reinforcement effect. The feature of the LSP strengthening mechanism of nickel-based alloy at a high temperature is the co-working effect of the nanocrystalline surface and the residual compressive stress after thermal relaxation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA