Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
ACS Med Chem Lett ; 15(9): 1606-1614, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39291002

RESUMEN

Hematopoietic progenitor kinase 1 (HPK1) serves a key immunosuppressive role as a negative regulator of T-cell receptor (TCR) signaling. HPK1 loss-of-function is associated with augmentation of immune function and has demonstrated synergy with immune checkpoint inhibitors in syngeneic mouse cancer models. These data offer compelling evidence for the use of selective small molecule inhibitors of HPK1 in cancer immunotherapy. We identified a novel series of isoquinoline HPK1 inhibitors through fragment-based screening that displayed promising levels of biochemical potency and activity in functional cell-based assays. We used structure-based drug design to introduce key selectivity elements while simultaneously addressing pharmacokinetic liabilities. These efforts culminated in a molecule demonstrating subnanomolar biochemical inhibition of HPK1 and strong in vitro augmentation of TCR signaling in primary human T-cells. Further profiling of this molecule revealed excellent kinase selectivity (347/356 kinases <50% inhibition @ 0.1 µM), a favorable in vitro safety profile, and good projected human pharmacokinetics.

2.
Phys Chem Chem Phys ; 24(16): 9188-9195, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35383804

RESUMEN

The work function can serve as a characteristic quantity to evaluate the catalytic activity due to its relationship with the surface structure of a material. However, what factors determine the influence of the work function on the electrochemical performance are still unclear. Herein, we elucidate the effect of the work function of Ag on the electrochemical reduction of CO2 to CO by controlling the ratio of exposed crystalline planes. To this end, the exposed surface of Ag powder was regulated by high-energy ball milling and its influence on CO2 reduction was investigated. The surface structure with more Ag(110) surface achieves higher activity and selectivity for CO production, resulting from the lower work function of Ag(110), which dramatically enhances the electron tunnelling probability during CO2 electroreduction. We found that a higher ratio of Ag(110) to Ag(100) leads to a lower work function and thus better electrochemical activity and selectivity. This study demonstrates a promising strategy to enhance the electrochemical performance of metal catalysts through tuning their work functions via regulating exposed crystalline planes.

3.
Langmuir ; 38(9): 2993-2999, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35212548

RESUMEN

Metallic materials with unique surface structure have attracted much attention due to their unique physical and chemical properties. However, it is hard to prepare bulk metallic materials with special crystal faces, especially at the nanoscale. Herein, we report an efficient method to adjust the surface structure of a Cu plate which combines ion implantation technology with the oxidation-etching process. The large number of vacancies generated by ion implantation induced the electrochemical oxidation of several atomic layers in depth; after chemical etching, the Cu(100) planes were exposed on the surface of the Cu plate. As a catalyst for acid hydrogen evolution reaction, the Cu plate with (100) planes merely needs 273 mV to deliver a current density of 10 mA/cm2 because the high-energy (100) surface has moderate hydrogen adsorption and desorption capability. This work provides an appealing strategy to engineer the surface structure of bulk metallic materials and improve their catalytic properties.

4.
ACS Med Chem Lett ; 13(1): 84-91, 2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35059127

RESUMEN

Hematopoietic progenitor kinase 1 (HPK1) is implicated as a negative regulator of T-cell receptor-induced T-cell activation. Studies using HPK1 kinase-dead knock-in animals have demonstrated the loss of HPK1 kinase activity resulted in an increase in T-cell function and tumor growth inhibition in glioma models. Herein, we describe the discovery of a series of small molecule inhibitors of HPK1. Using a structure-based drug design approach, the kinase selectivity of the molecules was significantly improved by inducing and stabilizing an unusual P-loop folded binding mode. The metabolic liabilities of the initial 7-azaindole high-throughput screening hit were mitigated by addressing a key metabolic soft spot along with physicochemical property-based optimization. The resulting spiro-azaindoline HPK1 inhibitors demonstrated improved in vitro ADME properties and the ability to induce cytokine production in primary human T-cells.

5.
Front Public Health ; 9: 692089, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34722434

RESUMEN

Objective: To determine the relationship between the health literacy of patients with diabetes mellitus (DM) and the accessibility of internet surfing for information concerning DM. Methods: A multistage stratified sampling method was utilized to conduct a questionnaire survey on DM health literacy and internet accessibility among 1,563 patients with DM in Gansu Province in 2020. Logistic regression was performed to analyze the factors that influence health literacy and internet accessibility; while the chi-square test was used to compare the differences in needs. Results: Among 1,563 valid questionnaires collected with an effective rate of 95.7%, there were 65.4, 66.3, or 51.1% of patients with DM were found to have good health knowledge, attitudes, or practice levels, respectively. Occupation, income, disease course of DM, and accessibility to the internet were the main factors influencing health literacy. Age, residency, occupation, education, income, and family history of DM were the factors influencing accessibility to internet surfing for DM. The expectations from patients with DM for the capacity to obtain DM information from traditional sources or through internet sources was 1,465 (93.7%) or 1,145 (73.3%), respectively. Patients with DM had a 2-fold higher desire to obtain DM health information from internet media if the patients had access to the internet than those without (P < 0.05). Conclusions: The socioeconomic status and access to the internet were the main contributing factors for health literacy, as socioeconomic status is closely related to access to the internet.


Asunto(s)
Diabetes Mellitus , Alfabetización en Salud , China/epidemiología , Estudios Transversales , Diabetes Mellitus/epidemiología , Humanos , Internet
6.
ACS Med Chem Lett ; 8(1): 84-89, 2017 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-28105280

RESUMEN

The N-methyl-d-aspartate receptor (NMDAR) is an ionotropic glutamate receptor, gated by the endogenous coagonists glutamate and glycine, permeable to Ca2+ and Na+. NMDAR dysfunction is associated with numerous neurological and psychiatric disorders, including schizophrenia, depression, and Alzheimer's disease. Recently, we have disclosed GNE-0723 (1), a GluN2A subunit-selective and brain-penetrant positive allosteric modulator (PAM) of NMDARs. This work highlights the discovery of a related pyridopyrimidinone core with distinct structure-activity relationships, despite the structural similarity to GNE-0723. GNE-5729 (13), a pyridopyrimidinone-based NMDAR PAM, was identified with both an improved pharmacokinetic profile and increased selectivity against AMPARs. We also include X-ray structure analysis and modeling to propose hypotheses for the activity and selectivity differences.

7.
J Med Chem ; 59(6): 2760-79, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-26919761

RESUMEN

The N-methyl-D-aspartate receptor (NMDAR) is a Na(+) and Ca(2+) permeable ionotropic glutamate receptor that is activated by the coagonists glycine and glutamate. NMDARs are critical to synaptic signaling and plasticity, and their dysfunction has been implicated in a number of neurological disorders, including schizophrenia, depression, and Alzheimer's disease. Herein we describe the discovery of potent GluN2A-selective NMDAR positive allosteric modulators (PAMs) starting from a high-throughput screening hit. Using structure-based design, we sought to increase potency at the GluN2A subtype, while improving selectivity against related α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). The structure-activity relationship of channel deactivation kinetics was studied using a combination of electrophysiology and protein crystallography. Effective incorporation of these strategies resulted in the discovery of GNE-0723 (46), a highly potent and brain penetrant GluN2A-selective NMDAR PAM suitable for in vivo characterization.


Asunto(s)
Antagonistas de Aminoácidos Excitadores/síntesis química , Antagonistas de Aminoácidos Excitadores/farmacología , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Animales , Células CHO , Calcio/metabolismo , Cricetinae , Cricetulus , Cristalografía por Rayos X , Descubrimiento de Drogas , Células HEK293 , Ensayos Analíticos de Alto Rendimiento , Humanos , Cinética , Modelos Moleculares , Técnicas de Placa-Clamp , Receptores AMPA/efectos de los fármacos , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA