Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(6): e27699, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38545188

RESUMEN

Kawasaki disease (KD) is a condition characterized by acute multi-system vasculitis and high fever in infants and children. Intravenous immunoglobulin (IVIG) is the established therapeutic approach of KD,foralleviating inflammation and mitigate the risk of arterial wall dilation and the development of coronary artery aneurysms (CAA). But almost 20% of the patients developed resistance to IVIG and displayed persistent fever after standard primary treatment. TSPAN5, belonging to the Tetraspanin family, has been demonstrated to modulate innate immunity in a range of human diseases. It accomplishes this by engaging with integrins and actively participating in the process of infection recognition. However, its relevance to susceptibility and IVIG therapy response of KD was unexposed. In the present study, our Integrative analysis of KD transcriptomic data and GTEx data revealed that the eQTL rs12504972 might modify the downregulation of TSPAN5 in KD patients. Moreover, our findings suggest a potential association between TSPAN5/rs12504972 and an elevated susceptibility as well as IVIG resistance among patients with Kawasaki disease in southern China. The results provided a new insight that TSPAN5 triggered KD susceptibility and resistance of IVIG therapy on the genomic level.

2.
Environ Chem Lett ; 21(2): 725-739, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36628267

RESUMEN

Policies and measures to control pandemics are often failing. While biological factors controlling transmission are usually well explored, little is known about the environmental drivers of transmission and infection. For instance, respiratory droplets and aerosol particles are crucial vectors for the airborne transmission of the severe acute respiratory syndrome coronavirus 2, the causation agent of the coronavirus 2019 pandemic (COVID-19). Once expectorated, respiratory droplets interact with atmospheric particulates that influence the viability and transmission of the novel coronavirus, yet there is little knowledge on this process or its consequences on virus transmission and infection. Here we review the effects of atmospheric particulate properties, vortex zones, and air pollution on virus survivability and transmission. We found that particle size, chemical constituents, electrostatic charges, and the moisture content of airborne particles can have notable effects on virus transmission, with higher survival generally associated with larger particles, yet some viruses are better preserved on small particles. Some chemical constituents and surface-adsorbed chemical species may damage peptide bonds in viral proteins and impair virus stability. Electrostatic charges and water content of atmospheric particulates may affect the adherence of virion particles and possibly their viability. In addition, vortex zones and human thermal plumes are major environmental factors altering the aerodynamics of buoyant particles in air, which can strongly influence the transport of airborne particles and the transmission of associated viruses. Insights into these factors may provide explanations for the widely observed positive correlations between COVID-19 infection and mortality with air pollution, of which particulate matter is a common constituent that may have a central role in the airborne transmission of the novel coronavirus. Supplementary Information: The online version contains supplementary material available at 10.1007/s10311-022-01557-z.

3.
Sustain Cities Soc ; 76: 103416, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34611508

RESUMEN

Global spread of COVID-19 has seriously threatened human life and health. The aerosol transmission route of SARS-CoV-2 is observed often associated with infection clusters under poorly ventilated environment. In the context of COVID-19 pandemic, significant transformation and optimization of traditional ventilation systems are needed. This paper is aimed to offer better understanding and insights into effective ventilation design to maximize its ability in airborne risk control, for particularly the COVID-19. Comprehensive reviews of each phase of aerosol transmission of SARS-CoV-2 from source to receptor are conducted, so as to provide a theoretical basis for risk prediction and control. Infection risk models and their key parameters for risk assessment of SARS-CoV-2 are analyzed. Special focus is given on the efficacy of different ventilation strategies in mitigating airborne transmission. Ventilation interventions are found mainly impacting on the dispersion and inhalation phases of aerosol transmission. The airflow patterns become a key factor in controlling the aerosol diffusion and distribution. Novel and personalized ventilation design, effective integration with other environmental control techniques and resilient HVAC system design to adapt both common and epidemic conditions are still remaining challenging, which need to be solved with the aid of multidisciplinary research and intelligent technologies.

4.
Sci Rep ; 5: 8322, 2015 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-25662574

RESUMEN

Dust devils are common but meteorologically unique phenomena on Earth and on Mars. The phenomenon produces a vertical vortex motion in the atmosphere boundary layer and often occurs in hot desert regions, especially in the afternoons from late spring to early summer. Dust devils usually contain abundant wind energy, for example, a maximum swirling wind velocity of up to 25 m/s, with a 15 m/s maximum vertical velocity and 5 m/s maximum near-surface horizontal velocity can be formed. The occurrences of dust devils cannot be used for energy generation because these are generally random and short-lived. Here, a concept of sustained dust-devil-like whirlwind is proposed for the energy generation. A prototype of a circular shed with pre-rotation vanes has been devised to generate the whirlwind flow by heating the air inflow into the circular shed. The pre-rotation vanes can provide the air inflow with angular momentum. The results of numerical simulations and experiment illustrate a promising potential of the circular shed for generating swirling wind energy via the collection of low-temperature solar energy.

5.
Environ Sci Technol ; 47(3): 1504-9, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23282022

RESUMEN

Immovable historical relics in some archeology museums of China suffer deterioration due to their improper preservation environment. The existing environmental control systems used in archeology museums are often designed for the amenities of visitors, and these manipulated environments are often inappropriate for the conservation of abiotic relics. This paper points out that the large open space of the existing archeology museum could be a cause of deterioration of the relics from the point of view of indoor air convective flow. The paper illustrates the need to introduce a local pit environmental control, which could reintegrate a pit primitive environment for the preservation of the historical relics by using an air curtain system, orientated to isolate the unearthed relics, semiexposed in pits to the large gallery open space of the exhibition hall.


Asunto(s)
Contaminación del Aire/prevención & control , Arqueología , Ambiente , Museos , Contaminantes Atmosféricos/análisis , China , Difusión , Gases
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA