Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Colloid Interface Sci ; 672: 392-400, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38848623

RESUMEN

The rational design and synthesis of carbon nanocages with highly complex porous structures are continuously facing challenges in the development of high-performance supercapacitors (SCs). The electrochemical performance characteristics of electrodes rely on their compositions and fabrication methods. Here, we propose a universal and efficient approach for the in-situ synthesis of zeolitic imidazolate framework-8 (ZIF-8) on porous carbonized wood, where the selective utilization of hexacarbonyl molybdenum protects the structural integrity of the ZIF-8 precursor, preventing collapse during thermal treatment. The subsequent pyrolysis process leads to the formation of small-sized molybdenum carbide (MoC) which are embedded in carbon nanocages (CN). The composite electrode consists of MoC/CN embedded in a porous carbonized wood (PCW), and it shows area-specific capacity of 9.7F cm-2 and 9.4 F cm-2 at 5 mA cm-2 and 30 mA cm-2, respectively. Subsequently, the symmetric supercapacitor, with two MoC/CN@PCW electrodes exhibits a areal specific capacitance of 2.7 F cm-2 at 5 mA cm-2. Moreover, this supercapacitor maintains an capacitance retention rate of 98.5 % after 12,000 discharge cycles. The supercapacitor exhibits a power density of 6.5 mW cm-2, resulting in an energy density of 0.864 mWh cm-2. Therefore, the utilization of wood-based electrodes holds promise for energy storage systems.

2.
Elife ; 122024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856718

RESUMEN

Abnormal lung development can cause congenital pulmonary cysts, the mechanisms of which remain largely unknown. Although the cystic lesions are believed to result directly from disrupted airway epithelial cell growth, the extent to which developmental defects in lung mesenchymal cells contribute to abnormal airway epithelial cell growth and subsequent cystic lesions has not been thoroughly examined. In the present study using genetic mouse models, we dissected the roles of bone morphogenetic protein (BMP) receptor 1a (Bmpr1a)-mediated BMP signaling in lung mesenchyme during prenatal lung development and discovered that abrogation of mesenchymal Bmpr1a disrupted normal lung branching morphogenesis, leading to the formation of prenatal pulmonary cystic lesions. Severe deficiency of airway smooth muscle cells and subepithelial elastin fibers were found in the cystic airways of the mesenchymal Bmpr1a knockout lungs. In addition, ectopic mesenchymal expression of BMP ligands and airway epithelial perturbation of the Sox2-Sox9 proximal-distal axis were detected in the mesenchymal Bmpr1a knockout lungs. However, deletion of Smad1/5, two major BMP signaling downstream effectors, from the lung mesenchyme did not phenocopy the cystic abnormalities observed in the mesenchymal Bmpr1a knockout lungs, suggesting that a Smad-independent mechanism contributes to prenatal pulmonary cystic lesions. These findings reveal for the first time the role of mesenchymal BMP signaling in lung development and a potential pathogenic mechanism underlying congenital pulmonary cysts.


Congenital disorders are medical conditions that are present from birth. Although many congenital disorders are rare, they can have a severe impact on the quality of life of those affected. For example, congenital pulmonary airway malformation (CPAM) is a rare congenital disorder that occurs in around 1 out of every 25,000 pregnancies. In CPAM, abnormal, fluid-filled sac-like pockets of tissue, known as cysts, form within the lungs of unborn babies. After birth, these cysts become air-filled and do not behave like normal lung tissue and stop a baby's lungs from working properly. In severe cases, babies with CPAM need surgery immediately after birth. We still do not understand exactly what the underlying causes of CPAM might be. CPAM is not considered to be hereditary ­ that is, it does not appear to be passed down in families ­ nor is it obviously linked to any environmental factors. CPAM is also very difficult to study, because researchers cannot access tissue samples during the critical early stages of the disease. To overcome these difficulties, Luo et al. wanted to find a way to study CPAM in the laboratory. First, they developed a non-human animal 'model' that naturally forms CPAM-like lung cysts, using genetically modified mice where the gene for the signaling molecule Bmpr1a had been deleted in lung cells. Normally, Bmpr1a is part of a set of the molecular instructions, collectively termed BMP signaling, which guide healthy lung development early in life. However, mouse embryos lacking Bmpr1a developed abnormal lung cysts that were similar to those found in CPAM patients, suggesting that problems with BMP signalling might also trigger CPAM in humans. Luo et al. also identified several other genes in the Bmpr1a-deficient mouse lungs that had abnormal patterns of activity. All these genes were known to be controlled by BMP signaling, and to play a role in the development and organisation of lung tissue. This suggests that when these genes are not controlled properly, they could drive formation of CPAM cysts when BMP signaling is compromised. This work is a significant advance in the tools available to study CPAM. Luo et al.'s results also shed new light on the molecular mechanisms underpinning this rare disorder. In the future, Luo et al. hope this knowledge will help us develop better treatments for CPAM, or even help to prevent it altogether.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo 1 , Pulmón , Mesodermo , Ratones Noqueados , Transducción de Señal , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/deficiencia , Ratones , Pulmón/embriología , Pulmón/metabolismo , Pulmón/patología , Mesodermo/embriología , Mesodermo/metabolismo , Quistes/metabolismo , Quistes/patología , Quistes/genética , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/genética , Enfermedades Pulmonares/metabolismo , Enfermedades Pulmonares/patología , Enfermedades Pulmonares/genética , Modelos Animales de Enfermedad
3.
J Colloid Interface Sci ; 671: 145-153, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38795535

RESUMEN

Wood-derived carbon, with its strong tracheid array structure, is an ideal material for use as a self-supporting electrode in supercapacitors. By leveraging the inherent through pore structure and surface affinity found in wood tracheids, we successfully engineered a highly spatially efficient cube-templated porous carbon framework inside carbonized wood tracheid cavities through precise control over precursor crystallization temperatures. This innovative cubic channel architecture effectively maximizes up to (79 ± 1)% of the cavity volume in wood-derived carbon while demonstrating exceptional hydrophilicity and high conductivity properties, facilitating the development of supercapacitors with enhanced areal/volumetric capacitances (2.65F cm-2/53.0F cm-3 at 5.0 mA cm-2) as well as superior areal/volumetric energy densities (0.37 mWh cm-2/7.36 mWh cm-3 at 2.5 mW cm-2). The fabrication of these cube-templated channels with high cube filling content is not only simple and precisely controllable, but also environmentally friendly. The proposed method eliminates the conventional acid-base treatment process for pore formation, facilitating the rapid development and practical implementation of thick electrodes with superior performance in supercapacitors. Moreover, it offers a universal research approach for the commercialization of wood-derived thick electrodes.

4.
bioRxiv ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-37808788

RESUMEN

Abnormal lung development can cause congenital pulmonary cysts, the mechanisms of which remain largely unknown. Although the cystic lesions are believed to result directly from disrupted airway epithelial cell growth, the extent to which developmental defects in lung mesenchymal cells contribute to abnormal airway epithelial cell growth and subsequent cystic lesions has not been thoroughly examined. In the present study, we dissected the roles of BMP receptor 1a (Bmpr1a)-mediated BMP signaling in lung mesenchyme during prenatal lung development and discovered that abrogation of mesenchymal Bmpr1a disrupted normal lung branching morphogenesis, leading to the formation of prenatal pulmonary cystic lesions. Severe deficiency of airway smooth muscle cells and subepithelial elastin fibers were found in the cystic airways of the mesenchymal Bmpr1a knockout lungs. In addition, ectopic mesenchymal expression of BMP ligands and airway epithelial perturbation of the Sox2-Sox9 proximal-distal axis were detected in the mesenchymal Bmpr1a knockout lungs. However, deletion of Smad1/5, two major BMP signaling downstream effectors, from the lung mesenchyme did not phenocopy the cystic abnormalities observed in the mesenchymal Bmpr1a knockout lungs, suggesting that a Smad-independent mechanism contributes to prenatal pulmonary cystic lesions. These findings reveal for the first time the role of mesenchymal BMP signaling in lung development and a potential pathogenic mechanism underlying congenital pulmonary cysts.

5.
Nat Commun ; 14(1): 3488, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37311756

RESUMEN

While the generation of many lineages from pluripotent stem cells has resulted in basic discoveries and clinical trials, the derivation of tissue-specific mesenchyme via directed differentiation has markedly lagged. The derivation of lung-specific mesenchyme is particularly important since this tissue plays crucial roles in lung development and disease. Here we generate a mouse induced pluripotent stem cell (iPSC) line carrying a lung-specific mesenchymal reporter/lineage tracer. We identify the pathways (RA and Shh) necessary to specify lung mesenchyme and find that mouse iPSC-derived lung mesenchyme (iLM) expresses key molecular and functional features of primary developing lung mesenchyme. iLM recombined with engineered lung epithelial progenitors self-organizes into 3D organoids with juxtaposed layers of epithelium and mesenchyme. Co-culture increases yield of lung epithelial progenitors and impacts epithelial and mesenchymal differentiation programs, suggesting functional crosstalk. Our iPSC-derived population thus provides an inexhaustible source of cells for studying lung development, modeling diseases, and developing therapeutics.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Animales , Ratones , Diferenciación Celular , Tórax , Mesodermo
6.
J Colloid Interface Sci ; 648: 674-682, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37321086

RESUMEN

A novel 3D stacked corrugated pore structure of polyaniline (PANI)/CoNiO2@activated wood-derived carbon (AWC) has been successfully constructed to prepare high-performance electrode materials for supercapacitors. AWC functions as a supporting framework that provides ample attachment sites for the loaded active materials. The CoNiO2 nanowire substrate, consisting of 3D stacked pores, not only serves as a template for subsequent PANI loading, but also acts as an effective buffer to mitigate the volume expansion of the PANI during ionic intercalation. The distinctive corrugated pore structure of PANI/CoNiO2@AWC facilitates electrolyte contact and significantly enhances the electrode material properties. The PANI/CoNiO2@AWC composite materials exhibit excellent performance (14.31F cm-2 at 5 mA cm-2) and superior capacitance retention (80% from 5 to 30 mA cm-2), owing to the synergistic effect among their components. Finally, PANI/CoNiO2@ AWC//reduced graphene oxide (rGO)@AWC asymmetric supercapacitor is assembled, which has a wide operating voltage (0 âˆ¼ 1.8 V), high energy density (4.95 mWh cm-3 at 26.44 mW cm-3) and cycling stability (90.96% after 7000 cycles).

7.
Stem Cells Dev ; 32(9-10): 246-257, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36785975

RESUMEN

Mfge8, a secreted glycoprotein, is a key molecule that mediates the phagocytosis of apoptotic cells. Previous research reported that Mfge8 is critical for the proliferation and differentiation of radial glial cells (RGCs) in the dentate gyrus of adult mice. The treatment of Mfge8 is also beneficial for the repair of central nervous system (CNS) injury after cerebral ischemia. This study aimed to investigate whether the expression of mfge8a in zebrafish embryos was associated with the development of CNS and larval behavior. We found that zebrafish mfge8a was initially expressed at 48 hpf, and its expression was gradually increased in the ventricular zone. Knocking down mfge8a with antisense morpholino oligonucleotides impaired both spontaneous and photoinduced swimming locomotion in the behavioral tests. The neurogenesis analysis in telencephalon showed that mfge8a morphants excessively promoted neural differentiation over self-renewal after RGCs division, and consequently depleted proliferative RGC population during early neurogenesis. Furthermore, downregulation of mfge8a was shown to alter the expression patterns of genes associated with Notch signaling pathway. Our results demonstrated that mfge8a is involved in the maintenance of the progenitor identity of RGCs in embryonic zebrafish brain through regulating Notch signaling pathway, thereby contributing to consistent neurogenesis and locomotor development.


Asunto(s)
Células-Madre Neurales , Pez Cebra , Animales , Ratones , Pez Cebra/genética , Pez Cebra/metabolismo , Células-Madre Neurales/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Neurogénesis/genética , Glicoproteínas/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Telencéfalo/metabolismo
8.
J Pathol ; 259(3): 331-341, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36484734

RESUMEN

Abnormal growth of airway smooth muscle cells is one of the key features in asthmatic airway remodeling, which is associated with asthma severity. The mechanisms underlying inappropriate airway smooth muscle cell growth in asthma remain largely unknown. Myocd has been reported to act as a key transcriptional coactivator in promoting airway-specific smooth muscle development in fetal lungs. Whether Myocd controls airway smooth muscle remodeling in asthma has not been investigated. Mice with lung mesenchyme-specific deletion of Myocd after lung development were generated, and a chronic asthma model was established by sensitizing and challenging the mice with ovalbumin for a prolonged period. Comparison of the asthmatic pathology between the Myocd knockout mice and the wild-type controls revealed that abrogation of Myocd mitigated airway smooth muscle cell hypertrophy and hyperplasia, accompanied by reduced peri-airway inflammation, decreased fibrillar collagen deposition on airway walls, and attenuation of abnormal mucin production in airway epithelial cells. Our study indicates that Myocd is a key transcriptional coactivator involved in asthma airway remodeling. Inhibition of Myocd in asthmatic airways may be an effective approach to breaking the vicious cycle of asthmatic progression, providing a novel strategy in treating severe and persistent asthma. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Asma , Proteínas Nucleares , Animales , Ratones , Asma/genética , Asma/metabolismo , Modelos Animales de Enfermedad , Inflamación/patología , Pulmón/patología , Ratones Endogámicos BALB C , Ratones Noqueados , Miocitos del Músculo Liso/patología , Proteínas Nucleares/metabolismo
9.
Molecules ; 27(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36500661

RESUMEN

Transition metal oxides (TMOs) can provide high theoretical capacitance due to the change of multiple valence states of transition metals. However, their intrinsic drawbacks, including poor electrical conductivity, lower energy density, and huge volume expansion, will result in the pulverization of electrode materials and restricted electrochemical kinetics, thus leading to poor rate capability and rapid capacity fading. Composite electrodes based on transition metal oxides and carbon-based materials are considered to be promising candidates for overcoming these limitations. Herein, we reported a preparation method of hybrid ZIFs derived Zn-doped Co3O4/carbon (Zn-Co3O4/C-230) particles semi-embedded in wood-derived carbon skeleton for integrated electrodes. A large specific surface area, excellent conductivity, and electrochemical stability provide a larger electrochemical activity and potential window for the electrode. Prepared Zn-Co3O4@CW-230 electrode (0.6 mm thick) displays ultrahigh area specific capacitances of 7.83 and 6.46 F cm-2 at the current densities of 5 and 30 mA cm-2, respectively. Moreover, a symmetric supercapacitor assembled by two identical Zn-Co3O4@CW-230 electrodes delivers a superior area-specific capacitance of 2.61 F cm-2 at the current densities of 5 mA cm-2 and great energy densities of 0.36 mWh cm-2 (6.0 mWh cm-3) at 2.5 mW cm-2, while maintaining 97.3% of initial capacitance over 10,000 cycles. It notably outperforms those of most carbon-based metal oxides, endowing the Zn-Co3O4@CW-230 with extensive prospects for practical application.


Asunto(s)
Carbono , Madera , Óxidos , Zinc
10.
J Colloid Interface Sci ; 608(Pt 1): 70-78, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34624766

RESUMEN

In this paper, a novel type of electrode material for high-performance hybrid supercapacitors is designed. The electrode mainly uses nitrogen-doped atoms to anchor the nickel-cobalt layered double hydroxide on the inner wall of wood-derived carbon tracheids from Chinese fir wood scraps. The specific capacity of the composite single electrode is 14.26 mAh cm-2 at 10 mA cm-2. The hybrid supercapacitor with a composite electrode cathode and nitrogen-doped wood-derived monolithic carbon materials as the anode has a high specific capacitance of 4.74F cm-2 at 5 mA cm-2, and the capacitance retention rate is 93.15% after 8000 charge-discharge cycles. The highest energy density and power density reach 1.48 mWh cm-2 and 22.40 mW cm-2, respectively. After doping with nitrogen, the combination with the nickel-cobalt layered double hydroxide is more uniform and stable, and the capacitance and cycling stability are significantly improved.

11.
Am J Physiol Lung Cell Mol Physiol ; 320(6): L1158-L1168, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33881909

RESUMEN

The TGF-ß signaling pathway plays a pivotal role in controlling organogenesis during fetal development. Although the role of TGF-ß signaling in promoting lung alveolar epithelial growth has been determined, mesenchymal TGF-ß signaling in regulating lung development has not been studied in vivo due to a lack of genetic tools for specifically manipulating gene expression in lung mesenchymal cells. Therefore, the integral roles of TGF-ß signaling in regulating lung development and congenital lung diseases are not completely understood. Using a Tbx4 lung enhancer-driven Tet-On inducible Cre transgenic mouse system, we have developed a mouse model in which lung mesenchyme-specific deletion of TGF-ß receptor 2 gene (Tgfbr2) is achieved. Reduced airway branching accompanied by defective airway smooth muscle growth and later peripheral cystic lesions occurred when lung mesenchymal Tgfbr2 was deleted from embryonic day 13.5 to 15.5, resulting in postnatal death due to respiratory insufficiency. Although cell proliferation in both lung epithelium and mesenchyme was reduced, epithelial differentiation was not significantly affected. Tgfbr2 downstream Smad-independent ERK1/2 may mediate these mesenchymal effects of TGF-ß signaling through the GSK3ß-ß-catenin-Wnt canonical pathway in fetal mouse lung. Our study suggests that Tgfbr2-mediated TGF-ß signaling in prenatal lung mesenchyme is essential for lung development and maturation, and defective TGF-ß signaling in lung mesenchyme may be related to abnormal airway branching morphogenesis and congenital airway cystic lesions.


Asunto(s)
Quistes/metabolismo , Enfermedades Pulmonares/patología , Mesodermo/citología , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Animales , Quistes/patología , Células Epiteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Pulmón/metabolismo , Pulmón/patología , Enfermedades Pulmonares/metabolismo , Ratones , Ratones Transgénicos , Morfogénesis/efectos de los fármacos , Morfogénesis/fisiología , Organogénesis/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo
12.
Contraception ; 103(3): 144-150, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33378645

RESUMEN

OBJECTIVE: To explore the prevalence of contraceptive use, unintended pregnancy, and induced abortions within 24 months postpartum in eastern, central, and western regions of China and in China overall. STUDY DESIGN: We conducted a retrospective cohort study and selected women who delivered a live birth between 12 and 24 months before the survey at 60 hospitals in eastern, central, and western regions of China. We used structured questionnaires for data collection and applied life-table analyses to estimate the prevalence of contraception, unintended pregnancy, and abortions. We used clustered log-rank tests to compare trends and rate differences at each time interval between/among regions. RESULTS: A total of 19,939 postpartum women were contacted, and 18,045 (90.5%) of them agreed to be interviewed. The 6-, 12-, and 24-month rates for modern contraceptive methods were 62.7% (95% confidence interval [CI] 58.9-66.4), 72.4% (95% CI 68.8-75.7), and 73.2% (95% CI 69.6-76.6), respectively. Condoms accounted for 79% of contraceptive initiators. The 6-, 12-, and 24-month rates were 1.4% (95% CI 1.2-1.7), 5.3% (95% CI 4.5--6.1), and 13.1% (95% CI 11.3-14.8) for unintended pregnancy; and 1.1% (95% CI 0.8-1.3), 4.0% (95% CI 3.4-4.6), and 10.4% (95% CI 8.9-11.8) for induced abortion, respectively. By 24 months postpartum, 3-quarters of unintended pregnancies ended in abortion. The 24-month rates of modern contraceptive methods (75.2% vs73.4%, 71.1%), unintended pregnancy (15.3% vs 11.1%, 12.6%), and induced abortion (11.8% vs 9.9%, 9.4%) were higher in the western region relative to the eastern or central regions. CONCLUSION: Postpartum contraception use was relatively high in China but dominated by less-effective methods, and these may contribute to higher risks of unintended pregnancy and induced abortion during the postpartum period. Use of long-acting reversible contraceptives and effective and reliable short-acting methods should thus be fostered in postpartum family planning services in China. IMPLICATIONS: A national postpartum family planning program is needed in China. Service providers should work on counselling postpartum women and their partners with respect to long-acting reversible contraceptive methods, and to effectively and reliably use short-acting methods during the postpartum period.


Asunto(s)
Aborto Inducido , Embarazo no Planeado , China/epidemiología , Anticoncepción , Conducta Anticonceptiva , Servicios de Planificación Familiar , Femenino , Humanos , Embarazo , Estudios Retrospectivos
13.
Nanoscale ; 12(34): 17738-17745, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32820759

RESUMEN

Carbonized and activated wood scraps are appealing scaffolds upon which to host active materials for supercapacitors, realizing the transformation of waste into a valuable device. However, the active material when loaded on the inner walls of the wood tracheids can be easily peeled off, resulting in poor cycling stability of the capacitor and low energy density. Here, we designed a novel composite electrode material for high-performance supercapacitors based on a polyaniline/carbon nanotube composite material with a core-shell structure synthesized in situ in a carbonized wood scaffold. Carbon nanotubes with excellent conductivity were first synthesized in situ on the inner walls of the tracheids via chemical vapor deposition, which were stably embedded in the wood tracheids to increase the specific surface area and active material loading active sites. Then, a layer of polyaniline was deposited on the outer surface of each carbon nanotube via electrochemical deposition to form a core-shell nanostructure. The composite material as a single electrode has high specific capacitances of 240.0 F cm-3 and 1019.5 F g-1 at 10 mA cm-2. Finally, the asymmetric supercapacitor based on the carbon nanotubes/carbonized wood scaffold as the anode and polyaniline/carbon nanotubes/carbonized wood scaffold as the cathode exhibited a high energy density of 40.5 W h kg-1 at 162.5 W kg-1 and a high capacity retention rate of 93.74% after 10 000 charge and discharge cycles at a current density of 20 mA cm-2.

14.
Thorax ; 75(6): 486-493, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32238524

RESUMEN

BACKGROUND: Pulmonary cysts and spontaneous pneumothorax are presented in most patients with Birt-Hogg-Dubé (BHD) syndrome, which is caused by loss of function mutations in the folliculin (FLCN) gene. The pathogenic mechanisms underlying the cystic lung disease in BHD are poorly understood. METHODS: Mesenchymal Flcn was specifically deleted in mice or in cultured lung mesenchymal progenitor cells using a Cre/loxP approach. Dynamic changes in lung structure, cellular and molecular phenotypes and signalling were measured by histology, immunofluorescence staining and immunoblotting. RESULTS: Deletion of Flcn in mesoderm-derived mesenchymal cells results in significant reduction of postnatal alveolar growth and subsequent alveolar destruction, leading to cystic lesions. Cell proliferation and alveolar myofibroblast differentiation are inhibited in the Flcn knockout lungs, and expression of the extracellular matrix proteins Col3a1 and elastin are downregulated. Signalling pathways including mTORC1, AMP-activated protein kinase, ERK1/2 and Wnt-ß-catenin are differentially affected at different developmental stages. All the above changes have statistical significance (p<0.05). CONCLUSIONS: Mesenchymal Flcn is an essential regulator during alveolar development and maintenance, through multiple cellular and molecular mechanisms. The mesenchymal Flcn knockout mouse model provides the first in vivo disease model that may recapitulate the stages of cyst development in human BHD. These findings elucidate the developmental origins and mechanisms of lung disease in BHD.


Asunto(s)
Síndrome de Birt-Hogg-Dubé/metabolismo , Síndrome de Birt-Hogg-Dubé/patología , Quistes/metabolismo , Quistes/patología , Enfermedades Pulmonares/metabolismo , Enfermedades Pulmonares/patología , Proteínas Proto-Oncogénicas/metabolismo , Alveolos Pulmonares/crecimiento & desarrollo , Proteínas Supresoras de Tumor/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Fenotipo , Neumotórax/metabolismo , Neumotórax/patología , Transducción de Señal
15.
Dev Cell ; 53(1): 73-85.e5, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32142630

RESUMEN

Airway smooth muscle is best known for its role as an airway constrictor in diseases such as asthma. However, its function in lung development is debated. A prevalent model, supported by in vitro data, posits that airway smooth muscle promotes lung branching through peristalsis and pushing intraluminal fluid to branching tips. Here, we test this model in vivo by inactivating Myocardin, which prevented airway smooth muscle differentiation. We found that Myocardin mutants show normal branching, despite the absence of peristalsis. In contrast, tracheal cartilage, vasculature, and neural innervation patterns were all disrupted. Furthermore, airway diameter is reduced in the mutant, counter to the expectation that the absence of smooth muscle constriction would lead to a more relaxed and thereby wider airway. These findings together demonstrate that during development, while airway smooth muscle is dispensable for epithelial branching, it is integral for building the tracheal architecture and promoting airway growth.


Asunto(s)
Cartílago/citología , Diferenciación Celular/fisiología , Células Epiteliales/citología , Músculo Liso/citología , Animales , Pulmón/citología , Morfogénesis/fisiología , Contracción Muscular/fisiología , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo
16.
Lab Invest ; 99(9): 1363-1375, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31028279

RESUMEN

Proper lung development depends on the precise temporal and spatial expression of several morphogenic factors, including Fgf10, Fgf9, Shh, Bmp4, and Tgf-ß. Over- or under-expression of these molecules often leads to aberrant embryonic or postnatal lung development. Herein, we deleted the Tgf-ß1 gene specifically within the lung embryonic mesenchymal compartment at specific gestational stages to determine the contribution of this cytokine to lung development. Mutant embryos developed severe lung hypoplasia and died at birth due to the inability to breathe. Despite the markedly reduced lung size, proliferation and differentiation of the lung epithelium was not affected by the lack of mesenchymal expression of the Tgf-ß1 gene, while apoptosis was significantly increased in the mutant lung parenchyma. Lack of mesenchymal expression of the Tgf-ß1 gene was also associated with reduced lung branching morphogenesis, with accompanying inhibition of the local FGF10 signaling pathway as well as abnormal development of the vascular system. To shed light on the mechanism of lung hypoplasia, we quantified the phosphorylation of 226 proteins in the mutant E12.5 lung compared with control. We identified five proteins, Hrs, Vav2, c-Kit, the regulatory subunit of Pi3k (P85), and Fgfr1, that were over- or under-phosphorylated in the mutant lung, suggesting that they could be indispensable effectors of the TGF-ß signaling program during embryonic lung development. In conclusion, we have uncovered novel roles of the mesenchyme-specific Tgf-ß1 ligand in embryonic mouse lung development and generated a mouse model that may prove helpful to identify some of the key pathogenic mechanisms underlying lung hypoplasia in humans.


Asunto(s)
Técnicas de Inactivación de Genes/métodos , Pulmón/embriología , Mesodermo/embriología , Morfogénesis/genética , Factor de Crecimiento Transformador beta1 , Animales , Animales Recién Nacidos , Apoptosis , Técnicas de Cultivo de Célula , Femenino , Pulmón/patología , Enfermedades Pulmonares/genética , Enfermedades Pulmonares/metabolismo , Masculino , Ratones , Ratones Transgénicos , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo
17.
Sci Rep ; 9(1): 5296, 2019 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-30923323

RESUMEN

Congenital pulmonary airway malformation (CPAM) is the most common congenital lesion detected in the neonatal lung, which may lead to respiratory distress, infection, and pneumothorax. CPAM is thought to result from abnormal branching morphogenesis during fetal lung development, arising from different locations within the developing respiratory tract. However, the pathogenic mechanisms are unknown, and previous studies have focused on abnormalities in airway epithelial cells. We have analyzed 13 excised lung specimens from infants (age < 1 year) with a confirmed diagnosis of type 2 CPAM, which is supposed to be derived from abnormal growth of intrapulmonary distal airways. By examining the mesenchymal components including smooth muscle cells, laminin, and elastin in airway and cystic walls using immunofluorescence staining, we found that the thickness and area of the smooth muscle layer underlining the airway cysts in these CPAM tissue sections were significantly decreased compared with those in bronchiolar walls of normal controls. Extracellular elastin fibers were also visually reduced or absent in airway cystic walls. In particular, a layer of elastin fibers seen in normal lung between airway epithelia and underlying smooth muscle cells was missing in type 2 CPAM samples. Thus, our data demonstrate for the first time that airway cystic lesions in type 2 CPAM occur not only in airway epithelial cells, but also in adjacent mesenchymal tissues, including airway smooth muscle cells and their extracellular protein products. This provides a new direction to study the molecular and cellular mechanisms of CPAM pathogenesis in human.


Asunto(s)
Malformación Adenomatoide Quística Congénita del Pulmón/patología , Pulmón/embriología , Mesodermo/patología , Elastina/análisis , Elastina/metabolismo , Células Epiteliales/patología , Femenino , Humanos , Lactante , Laminina/análisis , Laminina/metabolismo , Pulmón/patología , Masculino , Músculo Liso/citología , Músculo Liso/embriología , Músculo Liso/patología , Miocitos del Músculo Liso/patología , Mucosa Respiratoria/citología , Mucosa Respiratoria/embriología , Mucosa Respiratoria/patología
18.
Chem Biol Drug Des ; 93(5): 934-948, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30689282

RESUMEN

Lenvatinib (LEN), sorafenib (SOR), and sunitinib (SUN) are drugs targeting vascular endothelial growth factor receptor 2 (VEGFR2). Despite sharing similar chemical structures and bioactivities, LEN and SOR bind to different functional states of VEGFR2, viz. DFG-in and DFG-out state, respectively. SUN binds to the DFG-out state of VEGFR2 just like SOR but with less potency. Thus, detail binding mechanisms between VEGFR2 and these drugs, especially dynamic interaction, are valuable for future drug design. In the present work, molecular dynamics simulation, essential dynamic analysis, and molecular mechanics/generalized born surface area were performed to these VEGFR2-drugs systems. Rank of calculated binding affinities is in accordance with the experimental data. The binding free energy calculation suggests that van der Waals interaction plays a vital role in the binding. Per-residue free energy decomposition indicates that residues L840, V848, A866, E885, L889, V899, V916, F918, C919, L1035, C1045, D1046, and F1047 play an important role in the binding between VEGFR2 and LEN/SOR. While residues L840, V848, E917, F918, C919, G922, L1035, and F1047 contribute the major hydrophobic interaction for SUN binding to the receptor. Our results also reveal that residue E885/D1046 plays a vital role in binding via forming hydrogen bonds with drugs.


Asunto(s)
Simulación de Dinámica Molecular , Compuestos de Fenilurea/química , Quinolinas/química , Sorafenib/química , Sunitinib/química , Receptor 2 de Factores de Crecimiento Endotelial Vascular/química , Sitios de Unión , Humanos , Enlace de Hidrógeno , Compuestos de Fenilurea/metabolismo , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/metabolismo , Estructura Terciaria de Proteína , Quinolinas/metabolismo , Sorafenib/metabolismo , Electricidad Estática , Sunitinib/metabolismo , Termodinámica , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
19.
Sci Rep ; 8(1): 8334, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29844468

RESUMEN

Lung alveolarization requires precise coordination of cell growth with extracellular matrix (ECM) synthesis and deposition. The role of extracellular matrices in alveogenesis is not fully understood, because prior knowledge is largely extrapolated from two-dimensional structural analysis. Herein, we studied temporospatial changes of two important ECM proteins, laminin and elastin that are tightly associated with alveolar capillary growth and lung elastic recoil respectively, during both mouse and human lung alveolarization. By combining protein immunofluorescence staining with two- and three-dimensional imaging, we found that the laminin network was simplified along with the thinning of septal walls during alveogenesis, and more tightly associated with alveolar endothelial cells in matured lung. In contrast, elastin fibers were initially localized to the saccular openings of nascent alveoli, forming a ring-like structure. Then, throughout alveolar growth, the number of such alveolar mouth ring-like structures increased, while the relative ring size decreased. These rings were interconnected via additional elastin fibers. The apparent patches and dots of elastin at the tips of alveolar septae found in two-dimensional images were cross sections of elastin ring fibers in the three-dimension. Thus, the previous concept that deposition of elastin at alveolar tips drives septal inward growth may potentially be conceptually challenged by our data.


Asunto(s)
Elastina/metabolismo , Laminina/metabolismo , Alveolos Pulmonares/metabolismo , Animales , Animales Recién Nacidos , Niño , Preescolar , Elastina/fisiología , Células Endoteliales/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/fisiología , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Lactante , Recién Nacido , Laminina/fisiología , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Organogénesis , Análisis Espacio-Temporal , Adulto Joven
20.
RSC Adv ; 8(16): 8836-8841, 2018 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35539826

RESUMEN

The mechanism of the reactions of ClF3O and n-decane had two stages. The first stage was the initial reaction between ClF3O and n-decane. The initial reactions were investigated using a density functional theory (DFT) method. The results showed that the critical part of the mechanism of the initial reaction was the roaming of the HF intermediate. A H atom on n-decane was abstracted by a F atom on ClF3O to produce HF. The formed HF roamed around and then broke to give ClFO, fluorinated decane and a new HF molecule. The initial reactions were considered to be barrier-less reactions and extremely exothermic. The average released energy of the initial reactions was 412.9 kJ mol-1, which was great enough to cause thermal decomposition of n-decane. The second stage included the reaction between ClFO and n-decane and the thermal decomposition of n-decane. The secondary reactions involving ClFO were also studied using a DFT method. ClFO was less reactive than ClF3O. The average energy barrier of the reactions of ClFO and n-decane was 116.3 kJ mol-1 and the average released energy was 266.5 kJ mol-1. Thermal decomposition of n-decane was evidenced by the emission spectra of the characteristic radical intermediates CH and C2, which were observed using an intensified charge-coupled device (ICCD) system. The main gaseous products of the thermal decomposition of n-decane, as identified using gas chromatography, were hydrogen, ethylene and acetylene. The experimental results showed that the thermal decomposition of n-decane was an important secondary reaction following the initial reactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA