Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Arch Microbiol ; 206(10): 401, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261350

RESUMEN

Staphylococcus aureus is a notorious pathogen predominantly involved in skin and soft tissue infections, exhibiting a distinct innate sex bias. This study explores the influence of testosterone on the virulence of S. aureus and elucidates its underlying mechanisms. Utilizing a skin abscess model in intact and castrated male mice, we assessed the effects of testosterone on S. aureus pathogenicity. Compared to controls, castrated mice showed significantly reduced abscess sizes and decreased bacterial loads, highlighting the role of testosterone in modulating the severity of S. aureus infections. In vitro experiments revealed that testosterone enhances the hemolytic activity, cytotoxicity, and oxidative stress resistance of S. aureus. Real-time quantitative PCR analysis showed a significant upregulation of the genes encoding α-hemolysin (hla) and phenol-soluble modulin (psmα). Importantly, testosterone treatment significantly enhanced the expression of the accessory gene regulator (Agr) quorum-sensing system components (agrC, agrA, agrB, agrD), while the SaeRS system (saeR, saeS, and sbi) exhibited only slight changes. Gene knockout experiments revealed that deletion of agrC, rather than saeRS and agrBD, abolishes the testosterone-induced enhancement of hemolysis and gene expression, underscoring the key role of AgrC. Molecular docking simulations indicated a direct interaction between testosterone and AgrC protein, with a strong binding affinity at the active site residue SER201. This study provides new insights into the mechanistic basis of how testosterone enhances the pathogenicity of S. aureus, potentially contributing to increased male susceptibility to S. aureus infections and offering a targeted approach for therapeutic interventions.


Asunto(s)
Proteínas Bacterianas , Infecciones Estafilocócicas , Staphylococcus aureus , Testosterona , Masculino , Testosterona/farmacología , Testosterona/metabolismo , Animales , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/metabolismo , Ratones , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Virulencia , Infecciones Estafilocócicas/microbiología , Transactivadores/genética , Transactivadores/metabolismo , Regulación Bacteriana de la Expresión Génica , Percepción de Quorum , Simulación del Acoplamiento Molecular , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Absceso/microbiología , Hemólisis , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/genética
2.
Front Med (Lausanne) ; 11: 1356839, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39005651

RESUMEN

Purpose: This study aimed to investigate and compare the anterior scleral thickness (AST) among high myopia (HM), primary open-angle glaucoma (POAG), and POAG with HM (HMPOAG) groups. Methods: Thirty-two HM eyes, 30 POAG eyes, and 31 HMPOAG eyes were included. The Schlemm's canal (SC) area, trabecular meshwork (TM) thickness, scleral spur (SS) length, and AST were measured using swept-source optical coherence tomography. AST was measured at 0 mm (AST0), 1 mm (AST1), 2 mm (AST2), and 3 mm (AST3) from SS. Results: The HMPOAG group had significantly thinner AST, SS length, and TM thickness than the HM and POAG groups (all p < 0.05). In addition, the SC area of the HMPOAG group was also significantly smaller than that of the HM group (p < 0.001). Conclusion: The HMPOAG group had the thinnest AST, shortest SS, thinnest TM, and smallest SC. The thinnest AST might contribute to the shortest SS, and further to the thinnest TM and smallest SC in the HMPOAG group. AST might be a novel clinical indicator in the prediction and evaluation of POAG.

3.
Arch Microbiol ; 206(7): 289, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847838

RESUMEN

Staphylococcus epidermidis is an opportunistic pathogen commonly implicated in medical device-related infections. Its propensity to form biofilms not only leads to chronic infections but also exacerbates the issue of antibiotic resistance, necessitating high-dose antimicrobial treatments. In this study, we explored the use of diclofenac sodium, a non-steroidal anti-inflammatory drug, as an anti-biofilm agent against S. epidermidis. In this study, crystal violet staining and confocal laser scanning microscope analysis showed that diclofenac sodium, at subinhibitory concentration (0.4 mM), significantly inhibited biofilm formation in both methicillin-susceptible and methicillin-resistant S. epidermidis isolates. MTT assays demonstrated that 0.4 mM diclofenac sodium reduced the metabolic activity of biofilms by 25.21-49.01% compared to untreated controls. Additionally, the treatment of diclofenac sodium resulted in a significant decrease (56.01-65.67%) in initial bacterial adhesion, a crucial early phase of biofilm development. Notably, diclofenac sodium decreased the production of polysaccharide intercellular adhesin (PIA), a key component of the S. epidermidis biofilm matrix, in a dose-dependent manner. Real-time quantitative PCR analysis revealed that diclofenac sodium treatment downregulated biofilm-associated genes icaA, fnbA, and sigB and upregulated negative regulatory genes icaR and luxS, providing potential mechanistic insights. These findings indicate that diclofenac sodium inhibits S. epidermidis biofilm formation by affecting initial bacterial adhesion and the PIA synthesis. This underscores the potential of diclofenac sodium as a supplementary antimicrobial agent in combating staphylococcal biofilm-associated infections.


Asunto(s)
Antibacterianos , Biopelículas , Diclofenaco , Staphylococcus epidermidis , Biopelículas/efectos de los fármacos , Staphylococcus epidermidis/efectos de los fármacos , Staphylococcus epidermidis/fisiología , Diclofenaco/farmacología , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Antiinflamatorios no Esteroideos/farmacología , Adhesión Bacteriana/efectos de los fármacos , Humanos , Polisacáridos Bacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos
4.
Arch Microbiol ; 206(7): 301, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874781

RESUMEN

Biofilm formation by methicillin-resistant Staphylococcus aureus (MRSA) on indwelling medical devices complicates the treatment of infection. Tetrabromobisphenol A (TBBPA), a synthetic, lipophilic, halogenated aromatic compound widely used as an additive in plastics and electronic products, has raised environmental concerns due to its potential for bioaccumulation. This study investigated the impact of sub-inhibitory concentrations of TBBPA on MRSA biofilm formation. Crystal violet staining and confocal laser scanning microscopy analysis demonstrated that 1/8 MIC (0.5 µg/mL) of TBBPA significantly stimulated MRSA biofilm formation (P < 0.0001). MTT assays indicated that the metabolic activity within the biofilms increased by 15.60-40.85% compared to untreated controls. Dot blot immunoassay, autolysis assay, and extracellular DNA (eDNA) quantification further revealed TBBPA enhanced the production of polysaccharide intercellular adhesin (PIA) and eDNA, which are key biofilm components. Additionally, TBBPA was found to enhance the production of staphyloxanthin, facilitating MRSA survival under oxidative conditions and in human whole blood. RT-qPCR analysis showed that TBBPA significantly upregulated genes associated with biofilm formation (icaA, atlA, sarA), staphyloxanthin biosynthesis (crtM and sigB), and oxidative stress responses (sodA and katA). These findings suggest that TBBPA promotes MRSA biofilm development and enhances bacterial resistance to adverse conditions, thereby potentially exacerbating risks to human health.


Asunto(s)
Biopelículas , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Bifenilos Polibrominados , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/fisiología , Bifenilos Polibrominados/farmacología , Humanos , Xantófilas/metabolismo , Xantófilas/farmacología , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos
5.
mSphere ; 9(6): e0031724, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38837389

RESUMEN

The emerging prevalence of drug-resistant Staphylococcus aureus isolates underscores the urgent need for alternative therapeutic strategies due to the declining effectiveness of traditional antibiotics in clinical settings. MgrA, a key virulence regulator in S. aureus, orchestrates the expression of numerous virulence factors. Here, we report the discovery of isorhapontigenin, a methoxylated analog of resveratrol, as a potential anti-virulence agent against S. aureus. Isorhapontigenin effectively inhibits the hemolytic activity of S. aureus in a non-bactericidal manner. Additionally, it significantly reduces the cytotoxicity of S. aureus and impairs its ability to survive in macrophages. Mechanistically, isorhapontigenin modulates the expression of virulence factors, dose-dependently downregulating hla and upregulating the MgrA-regulated gene spa. Electrophoretic mobility shift assays demonstrated that isorhapontigenin inhibits the binding of MgrA to the hla promoter in a dose-dependent manner. Thermal shift assays confirmed the direct interaction between isorhapontigenin and the MgrA protein. The in vivo experiments demonstrated that isorhapontigenin significantly reduced the area of skin abscesses and improved survival in a pneumonia model while decreasing bacterial burden and inflammation in the lungs. In conclusion, isorhapontigenin holds potential as a candidate drug for further development as an anti-virulence agent for treating S. aureus infections. IMPORTANCE: The emergence of antibiotic-resistant Staphylococcus aureus strains presents a formidable challenge to public health, necessitating novel approaches in combating these pathogens. Traditional antibiotics are becoming increasingly ineffective, leading to a pressing need for innovative therapeutic strategies. In this study, targeting virulence factors that play a crucial role in the pathogenesis of bacterial infections offers a promising alternative to circumvent resistance mechanisms. The discovery of isorhapontigenin as an inhibitor of S. aureus virulence represents a significant advance in anti-virulence therapy.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Infecciones Estafilocócicas , Staphylococcus aureus , Factores de Virulencia , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/patogenicidad , Staphylococcus aureus/genética , Factores de Virulencia/genética , Antibacterianos/farmacología , Virulencia/efectos de los fármacos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Animales , Ratones , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Estilbenos/farmacología , Humanos , Macrófagos/microbiología , Macrófagos/efectos de los fármacos , Femenino , Ratones Endogámicos BALB C , Células RAW 264.7
6.
Biomed Pharmacother ; 173: 116300, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38430629

RESUMEN

Hyperthyroidism, often accompanied by hepatic insufficiency (HI), poses significant clinical challenges, highlighting the necessity for identifying optimal treatment strategies and early diagnostic biomarkers to improve patient outcomes. This study aimed to determine the optimal iodine-131 (131I) intervention dose for alleviating hyperthyroidism with HI and to identify serum metabolic biomarkers for early diagnosis using UPLC-Q/TOF-MS technology. A mouse model for early 131I intervention was established to monitor changes in physiological response, body weight, fur condition, thyroid, and liver function. Metabolite identification was achieved through UPLC-Q/TOF-MS and further analyzed via MetaboAnalyst. Six biomarkers were identified and subjected to ROC analysis. Early intervention with 80 µCi 131I per gram of thyroid tissue effectively controlled hyperthyroidism and improved liver function. Metabolomics analysis uncovered 63 differentially abundant metabolites, six of which (L-kynurenine, Taurochenodesoxycholic acid, Glycocholic acid, Phytosphingosine, Tryptamine, and Betaine) were identified as early warning biomarkers. Post-intervention, these biomarkers progressively returned to normal levels. This study demonstrates the efficacy of UPLC-Q/TOF-MS in identifying metabolic biomarkers for early diagnosis of hyperthyroidism with HI and highlights the therapeutic potential of early 131I intervention in normalizing these biomarkers.


Asunto(s)
Insuficiencia Hepática , Hipertiroidismo , Radioisótopos de Yodo , Fallo Hepático , Ratones , Animales , Humanos , Cromatografía Líquida de Alta Presión , Espectrometría de Masas , Metabolómica , Biomarcadores/metabolismo , Hipertiroidismo/radioterapia
7.
Lab Med ; 55(1): 71-79, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-37253164

RESUMEN

OBJECTIVE: The aim of this study was to evaluate the efficacy of metagenomic next-generation sequencing (mNGS) for the identification of Gram-negative bacteria (GNB) infections and the prediction of antimicrobial resistance. METHODS: A retrospective analysis was conducted on 182 patients with diagnosis of GNB infections who underwent mNGS and conventional microbiological tests (CMTs). RESULTS: The detection rate of mNGS was 96.15%, higher than CMTs (45.05%) with a significant difference (χ 2 = 114.46, P < .01). The pathogen spectrum identified by mNGS was significantly wider than CMTs. Interestingly, the detection rate of mNGS was substantially higher than that of CMTs (70.33% vs 23.08%, P < .01) in patients with but not without antibiotic exposure. There was a significant positive correlation between mapped reads and pro-inflammatory cytokines (interleukin-6 and interleukin-8). However, mNGS failed to predict antimicrobial resistance in 5 of 12 patients compared to phenotype antimicrobial susceptibility testing results. CONCLUSIONS: Metagenomic next-generation sequencing has a higher detection rate, a wider pathogen spectrum, and is less affected by prior antibiotic exposure than CMTs in identifying Gram-negative pathogens. The mapped reads may reflect a pro-inflammatory state in GNB-infected patients. Inferring actual resistance phenotypes from metagenomic data remains a great challenge.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Humanos , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Estudios Retrospectivos , Secuenciación de Nucleótidos de Alto Rendimiento , Citocinas , Sensibilidad y Especificidad
8.
Front Microbiol ; 14: 1328947, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38179460

RESUMEN

Staphylococcus aureus readily forms biofilms on host tissues and medical devices, enabling its persistence in chronic infections and resistance to antibiotic therapy. The accessory gene regulator (Agr) quorum sensing system plays a key role in regulating S. aureus biofilm formation. This study reveals the widely used fluoroquinolone antibiotic, ciprofloxacin, strongly stimulates biofilm formation in methicillin-resistant S. aureus, methicillin-sensitive S. aureus, and clinical isolates with diverse genetic backgrounds. Crystal violet staining indicated that ciprofloxacin induced a remarkable 12.46- to 15.19-fold increase in biofilm biomass. Confocal laser scanning microscopy revealed that ciprofloxacin induced denser biofilms. Phenotypic assays suggest that ciprofloxacin may enhance polysaccharide intercellular adhesin production, inhibit autolysis, and reduce proteolysis during the biofilm development, thus promoting initial adhesion and enhancing biofilm stability. Mechanistically, ciprofloxacin significantly alters the expression of various biofilm-related genes (icaA, icaD, fnbA, fnbB, eap, emp) and regulators (agrA, saeR). Gene knockout experiments revealed that deletion of agrC, rather than saeRS, abolishes the ciprofloxacin-induced enhancement of biofilm formation, underscoring the key role of agrC. Thermal shift assays showed ciprofloxacin binds purified AgrC protein, thereby inhibiting the Agr system. Molecular docking results further support the potential interaction between ciprofloxacin and AgrC. In summary, subinhibitory concentrations of ciprofloxacin stimulate S. aureus biofilm formation via an agrC-dependent pathway. This inductive effect may facilitate local infection establishment and bacterial persistence, ultimately leading to therapeutic failure.

9.
Ophthalmic Res ; 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35926453

RESUMEN

INTRODUCTION: To investigate and compare the anterior segment biometrics in high myopia and control groups. METHODS: Thirty-four eyes of 34 high myopia patients and 42 eyes of 42 control subjects were included. The Schlemm's canal (SC) area, trabecular meshwork (TM) thickness and length, scleral spur (SS) length and anterior scleral thickness (AST) were measured using swept-source optical coherence tomography. Associations between SC area, TM thickness, TM length, SS length and AST were also estimated. RESULTS: SC area, TM thickness and SS length were significantly associated with AST0 (AST at 0mm from SS) in both high myopia and control groups. AST0 (702.61±78.05 vs. 729.12±95.87 µm, p=0.085) and SS length (206.25±52.25 vs. 212.09±51.86 µm, p=0.556) were not significantly different between high myopia and control groups, whereas SC area (6622.68±1130.06 vs. 6105.85±1297.84 µm2, p=0.015) was significantly greater and TM thickness (96.15±34.40 vs. 107.93±29.97 µm, p=0.048) was significantly thinner in high myopia group than in control group. CONCLUSION: SC area and TM thickness were significantly associated with AST0, while AST0 and SS length were not significantly different between high myopia and control groups. The changes in SC and TM dimensions in high myopia eyes might be caused by factors other than AST0 and SS length.

10.
Polymers (Basel) ; 14(11)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35683830

RESUMEN

Thermoplastic polyurethane (TPU) is a kind of dielectric elastomer (DE) which can behave as an actuator, altering thickness strain in response to electrical stimulation. The composites are made up of fillers with a very high dielectric constant that are spread in a polymer matrix. It is very difficult to obtain large deformation at low voltage. In this study, we made two-dimensional (2D) MXene nanosheets with excellent conductivity and one-dimensional (1D) polydopamine (PDA)-modified CNT fiber fillers. After that, TPU dielectric elastomer films made of MXene/CNTs or MXene/CNTs@PDA were prepared. The results showed that the dielectric constant and dielectric loss of TPU dielectric film including MXene/CNTs were much higher than that containing MXene/CNTs@PDA, although Young's modulus and breakdown strength (Eb) were significantly lower. At the same time, these two types of dielectric films had a significantly higher dielectric constant and dielectric loss than pure TPU dielectric film, and their breakdown strength was significantly lower. The compatibility of CNTs@PDA fibers with the TPU matrix improves after PDA modification, and the dispersion of CNTs@PDA fibers improves, resulting in an increase in Young's modulus. MXene with a two-dimensional nanosheet structure increases the breakdown strength of the TPU dielectric elastomer under the condition of the addition of a tiny quantity. To summarize, the dielectric constant, dielectric loss, Young's modulus, and dielectric elastomer breakdown strength are mutually restrictive conditions, and the relationship between all parties must be balanced to obtain obvious deformation properties.

11.
Bioengineered ; 12(1): 8100-8115, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34672237

RESUMEN

Colorectal cancer is a common cause of cancer-related death worldwide. Thus, there is an urgent need to determine the mechanism of progression of colorectal cancer. In this study, we investigated the function and mechanism of long non-coding RNA LINC00958, providing a new biomarker for colorectal cancer. The expression of LINC00958, miR-3064-5p, and LEM domain containing 1 (LEMD1) in colorectal cancer tissues and cell lines was analyzed using reverse transcription quantitative polymerase chain reaction (RT-qPCR). The interaction between LINC00958, miR-3064-5p, and LEMD1 was assessed using the luciferase assay. The viability, proliferation, migration, invasion, and apoptosis of colorectal cancer cells with silenced LINC00958, miR-3064-5p, and LEMD1 were investigated using the cell counting kit-8 (CCK-8), 5'-Bromo-2'-deoxyuridine (BrdU), flow cytometry, wound healing, and transwell assays. Phosphorylated phosphoinositide 3-kinase (p-PI3K) and phosphorylated protein kinase B (p-AKT) protein levels were measured by western blotting. LINC00958 and LEMD1 were found to have increased, while the expression of miR-3064-5p was decreased in colorectal cancer tissues and cell lines. Silencing of LINC00958 hampered cell viability, proliferation, migration, and invasion, while enhancing the apoptosis in colorectal cancer cells. Notably, LINC00958 inhibited miR-3064-5p and promoted LEMD1; the miR-3064-5p inhibitor abrogated the effect of LINC00958 silencing in colorectal cancer cells. Additionally, LEMD1 knockdown inhibited the activation of PI3K/AKT signaling. Our analyses have shown that LINC00958 could facilitate the progression of colorectal cancer by sponging miR-3064-5p and releasing LEMD1, leading to the activation of the PI3K/AKT pathway. Thus, LINC00958 may be considered as an effective biomarker for the treatment of colorectal cancer.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Colorrectales/genética , MicroARNs/genética , Proteínas de Neoplasias/genética , ARN Largo no Codificante/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HCT116 , Humanos , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
12.
Oxid Med Cell Longev ; 2021: 9397960, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34552687

RESUMEN

OBJECTIVES: In glaucomatous eyes, the main aqueous humor (AH) outflow pathway is damaged by accumulated oxidative stress arising from the microenvironment, vascular dysregulation, and aging, which results in increased outflow resistance and ocular hypertension. Schlemm's canal (SC) serves as the final filtration barrier of the main AH outflow pathway. The present study is aimed at investigating the possible regulation of vasoactive intestinal peptide (VIP) on the cytoskeleton by stabilizing ZO-1 in SC. METHODS: Model of chronic ocular hypertension (COH) induced by episcleral venous cauterization was treated with topical VIP. The ultrastructure of junctions, ZO-1 levels, and permeability of the SC inner wall to FITC-dextran (70 kDa) were detected in the COH models. The F-actin distribution, F/G-actin ratio, and ZO-1 degradation pathway in human umbilical vein endothelial cells (HUVECs) and HEK 293 cells were investigated. RESULTS: ZO-1 in the outer wall of the SC was less than that in the inner wall. COH elicited junction disruption, ZO-1 reduction, and increased permeability of the SC inner wall to FITC-dextran in rats. ZO-1 plays an essential role in maintaining the F/G-actin ratio and F-actin distribution. VIP treatment attenuated the downregulation of ZO-1 associated with COH or H2O2-induced oxidative damage. In H2O2-stimulated HUVECs, the caspase-3 inhibitor prevents ZO-1 disruption. Caspase-3 activation promoted endolysosomal degradation of ZO-1. Furthermore, a decrease in caspase-3 activation and cytoskeleton redistribution was demonstrated in VIP + H2O2-treated cells. The knockdown of ZO-1 or the overexpression of caspase-3 blocked the effect of VIP on the cytoskeleton. CONCLUSION: This study provides insights into the role of VIP in stabilizing the interaction between the actin cytoskeleton and cell junctions and may provide a promising targeted strategy for glaucoma treatment.


Asunto(s)
Citoesqueleto de Actina/química , Caspasa 3/metabolismo , Endotelio Vascular/metabolismo , Glaucoma/metabolismo , Esclerótica/metabolismo , Péptido Intestinal Vasoactivo/farmacología , Proteína de la Zonula Occludens-1/metabolismo , Animales , Humor Acuoso/efectos de los fármacos , Humor Acuoso/metabolismo , Caspasa 3/genética , Endosomas/metabolismo , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/patología , Glaucoma/tratamiento farmacológico , Glaucoma/patología , Lisosomas/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Esclerótica/efectos de los fármacos , Esclerótica/patología , Proteína de la Zonula Occludens-1/genética
13.
Front Oncol ; 11: 624369, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33981598

RESUMEN

Apatinib, an anti-tumor drug selectively targeting VEGFR2 (Vascular Endothelia Growth Factor Recpetor-2), has been proven effective in Chinese patients with liver cancer. Generally, treatment with apatinib achieves 16.1% of the overall objective remission rate (ORR) and 55.83% of the disease control rate (DCR) in Chinese patients with liver cancer. However, the prevalence of apatinib-induced hand-foot skin reaction (AI-HFSR) is noticeably high. The incidence of AI-HFSR is about 50.5%, of which Grades 1/2 and 3 are 38.8 and 11.6%, respectively. In addition, potential molecular mechanisms underlying the development of AI-HFSR are poorly understood and urgently needed to be investigated histologically. In this review, we summarize and review the current efficacy of apatinib and the prevalence of AI-HFSR in Chinese patients with liver cancer. Besides, we postulate the potential mechanisms underlying the development of AI-HFSR and discuss the optimal clinical management for this unwanted cutaneous side effect.

14.
Exp Eye Res ; 203: 108388, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33333046

RESUMEN

PURPOSE: To explore the role of nucleotide-binding oligomerization domain-like receptors (NLRs) family caspase-activation and the recruitment domain containing 4 (NLRC4) inflammasome in retinal ganglion cell (RGC) injury induced by an acute glaucoma mouse model. METHOD: A mouse model of acute ocular hypertension, which can lead to retinal ischemia-reperfusion (I/R) injury, was established. The expression level of NLRC4 was detected by polymerase chain reaction and western blotting. Localized expression of NLRC4 was detected by examining immunofluorescence in eyeball sections. Intravitreal adeno-associated virus 2(AAV2) administration was used to knockdown retinal Nlrc4. Fluoro-Gold labeled RGCs and TdT-mediated dUTP nick end labeling were used to evaluate the survival and apoptosis of RGCs. Tlr4-/- mice were utilized to explore whether NLRC4 inflammasome is influenced by Toll-like receptor4 (TLR4). RESULTS: NLRC4, expressed in RGCs and microglial cells, was actively involved in mouse retinal I/R injury. Knockdown of Nlrc4 using an AAV2 vector caused an obvious reduction in the generation of IL-1ß led by the rapidly elevated intraocular pressure, and thereby improved the RGC survival. In addition, activation of the NLRC4 inflammasome could influence the phosphorylation of p38 and Jun N-terminal kinase, which was largely dependent on TLR4 signaling. CONCLUSION: Our study demonstrated the role of NLRC4 inflammasome in promoting RGC damage in mouse retinal I/R injury. Inhibition of NLRC4 might be leveraged as a potential therapeutic target in glaucomatous retinopathy.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/fisiología , Proteínas de Unión al Calcio/fisiología , Muerte Celular/fisiología , Glaucoma/patología , Inflamasomas/metabolismo , Células Ganglionares de la Retina/patología , Enfermedad Aguda , Animales , Western Blotting , Dependovirus , Modelos Animales de Enfermedad , Glaucoma/metabolismo , Etiquetado Corte-Fin in Situ , Presión Intraocular , MAP Quinasa Quinasa 4/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Fluorescente , Hipertensión Ocular/metabolismo , Hipertensión Ocular/patología , Parvovirinae/genética , Fosforilación , Reacción en Cadena en Tiempo Real de la Polimerasa , Daño por Reperfusión/metabolismo , Retina/metabolismo , Células Ganglionares de la Retina/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
15.
Invest Ophthalmol Vis Sci ; 61(11): 40, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32976562

RESUMEN

Purpose: The purpose of this study was to investigate the relationship between circadian rhythm and intraocular pressure (IOP), and to explore whether electrical stimulation of cervical sympathetic ganglia (SCG) can regulate IOP via neurotransmitter distribution around the Schlemm's canal (SC) in rats. Methods: Sprague Dawley rats were housed under normal (N-normal), constant dark (N-dark), and constant light (N-light) rhythms (n = 6 per group). Electrical stimulation (intermittent wave [20 hertz {Hz}, 2 mA, 10 minutes]) was used to stimulate the SCG. Atropine sulfate eye gel was applied three times a day. DiI was injected into the SCG and anterior chamber. The cross-sectional area and circumference of SC were evaluated using hematoxylin-eosin staining. Immunofluorescence staining was used to evaluate dopamine-ß-hydroxylase (DßH) expression in SC endothelial (SCE) cells. Results: N-Dark increased the IOP, decreased the cross-sectional area of SC, and increased DßH levels in SCE cells. Nerve projection between SC and SCG was detected, and electrical stimulation of SCG upregulated DßH expression in SCE cells. Under normal and constant light rhythms, electrical stimulation of SCG increased DßH and decreased the cross-sectional area and circumference of SC, while simultaneously increasing IOP and decreasing IOP fluctuations. After paralyzing the ciliary muscles, electrical stimulation of SCG decreased the cross-sectional area and circumference of SC under normal and constant light rhythms. Conclusions: N-Dark increased DßH in SCE cells, reduced the cross-sectional area of SC, and increased IOP. Under the normal and light rhythms, electrical stimulation of SCG increased DßH in SCE cells, reduced the cross-sectional area and circumference of SC, and in turn elevated IOP and decreased IOP fluctuations.


Asunto(s)
Humor Acuoso/metabolismo , Ritmo Circadiano/fisiología , Estimulación Eléctrica/métodos , Ganglios Simpáticos/fisiopatología , Glaucoma/fisiopatología , Presión Intraocular/fisiología , Malla Trabecular/metabolismo , Animales , Modelos Animales de Enfermedad , Ganglios Simpáticos/metabolismo , Glaucoma/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley
16.
Invest Ophthalmol Vis Sci ; 61(6): 45, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32572455

RESUMEN

Purpose: A previous study reported that vasoactive intestinal peptide (VIP) can regulate the cytoskeleton of Schlemm's canal (SC) endothelium and expand the SC lumen in a rat glaucoma model. In this study, we aimed to investigate the molecular mechanism of VIP on cytoskeleton regulation. Methods: During in vivo experiments in rats, leucine-rich repeat kinase 2 (LRRK2) expression and the ratio of F-actin to G-actin (F-/G-actin) surrounding SC were examined by immunofluorescence after the application of VIP. For in vitro experiments in human umbilical vein endothelial cells, both quantitative PCR (qPCR) and western blotting were performed to evaluate Sp1 and LRRK2 expression after the application of VIP (and Sp1/LRRK2 inhibitor). In addition, the F-/G-actin ratio was examined by both immunofluorescence and western blotting after the application of VIP (and LRRK2 inhibitor). Results: VIP induced increases in the expression of LRRK2 both in vivo and in vitro and the nuclear translocation of Sp1 in vitro. The application of Sp1 inhibitor abolished the increase in LRRK2 expression induced by VIP in vitro. In addition, VIP changed the F-/G-actin ratio, and this effect was abolished by the LRRK2 inhibitor both in vivo and in vitro. Conclusions: VIP increased the expression of LRRK2, and this regulation was due to the nuclear translocation of Sp1. VIP further changed the F-/G-actin ratio and regulated the balance between the stabilization and destabilization of the F-actin architecture. This study elucidates a novel mechanism by which VIP regulates the actin cytoskeleton of SC endothelium via the Sp1-LRRK2 pathway, suggesting a potential novel treatment strategy for glaucoma.


Asunto(s)
Actinas/genética , Endotelio/metabolismo , Regulación de la Expresión Génica , Glaucoma/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Malla Trabecular/metabolismo , Péptido Intestinal Vasoactivo/farmacología , Actinas/biosíntesis , Actinas/efectos de los fármacos , Animales , Western Blotting , Modelos Animales de Enfermedad , Endotelio/efectos de los fármacos , Endotelio/patología , Glaucoma/metabolismo , Glaucoma/patología , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/biosíntesis , Masculino , Ratas , Ratas Sprague-Dawley , Malla Trabecular/efectos de los fármacos , Malla Trabecular/patología
17.
Graefes Arch Clin Exp Ophthalmol ; 258(6): 1253-1260, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32146558

RESUMEN

PURPOSE: To investigate the diagnostic capability of scleral spur length in discriminating eyes with primary open-angle glaucoma (POAG) from healthy eyes. METHODS: Seventy-eight eyes of 78 patients with POAG and 93 eyes of 93 age-, sex- and axial length-matched healthy subjects were included. The scleral spur length was measured using swept-source optical coherence tomography. Receiver operating characteristic (ROC) curves were derived based on the measurements. RESULTS: The scleral spur length was significantly shorter in POAG eyes compared with healthy eyes (Method I, 164.91 ± 23.36 vs. 197.60 ± 25.32 µm; Method II, 145.15 ± 16.59 vs. 166.95 ± 19.31 µm; Method III, 162.33 ± 22.83 vs. 185.12 ± 23.58 µm, respectively; all p < 0.001). The areas under ROC curves were 0.841 (Method I), 0.810 (Method II), and 0.753 (Method III) for the scleral spur length. Moreover, Schlemm's canal area was significantly associated with the scleral spur length (Method I) in both POAG (ß = 0.027; p < 0.001) and healthy (ß = 0.016; p = 0.009) groups. CONCLUSIONS: The scleral spur length had a good discriminating capability between POAG and healthy eyes, and it could be a novel biomarker for POAG evaluation clinically.


Asunto(s)
Glaucoma de Ángulo Abierto/diagnóstico , Esclerótica/patología , Adulto , Femenino , Gonioscopía , Voluntarios Sanos , Humanos , Presión Intraocular/fisiología , Masculino , Persona de Mediana Edad , Curva ROC , Esclerótica/diagnóstico por imagen , Tomografía de Coherencia Óptica , Tonometría Ocular , Malla Trabecular/patología , Agudeza Visual/fisiología
18.
J Ophthalmol ; 2018: 8513760, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30245872

RESUMEN

PURPOSE: To observe the recovery process of postexercise Schlemm's canal (SC) and intraocular pressure (IOP) in healthy individuals. METHODS: Twenty healthy individuals were recruited. SC and IOP were evaluated before exercise, immediately after exercise, and 15, 30, and 60 minutes after exercise. Superior, inferior, nasal, and temporal SC quadrants were evaluated using swept-source optical coherence tomography (SS-OCT). RESULTS: Average SC area (3726.81 ± 1167.06 vs. 4660.57 ± 1284.82 µm2) and perimeter (324.11 ± 58.95 vs. 367.19 ± 73.34 µm) increased, and IOP (14.02 ± 2.33 vs. 11.65 ± 1.90 mmHg) decreased significantly during exercise (all p < 0.001). After exercise, both SC and IOP recovered to preexercise values, and the recovery time for postexercise SC dimensions (15 minutes) was shorter than that for postexercise IOP (60 minutes). After adjusting for age, gender, axial length, central corneal thickness, and spherical equivalent, postexercise changes in SC dimensions were not significantly associated with postexercise changes in IOP compared with preexercise values (all p > 0.05). There were no significant differences in the observable SC proportion before and after exercise (all p > 0.05). CONCLUSIONS: The exercise-induced SC expansion and IOP reduction could recover to preexercise values after exercise, and SC recovered to preexercise values ahead of IOP. Moreover, SC might be regulated by the sympathetic nerves and could be an important causative factor of changes in IOP during and after exercise.

19.
Invest Ophthalmol Vis Sci ; 59(7): 2848-2860, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30025111

RESUMEN

Purpose: To investigate the roles of vasoactive intestinal peptides (VIPs) in regulating the morphology and F-actin distribution of Schlemm's canal (SC) of rat eyes. Methods: Chronic intraocular pressure (IOP) hypertension models with episcleral venous cauterization (EVC) were treated with topical VIP or PG99-465 (vasoactive intestinal peptide receptors 2 [VPAC2] antagonist). IOPs were measured with Tono-Pen, and the SC parameters, including the cross-section area, circumference, and length, were statistically evaluated by hematoxylin-eosin and CD31 immunohistochemical staining. Immunofluorescence was performed to detect the distribution of F-actin in the SC. Moreover, the distribution of filamentous actin (F-actin) and globular actin (G-actin) in human umbilical vein endothelial cells (HUVECs) was studied under a pressure system by immunofluorescence and Western blotting. Results: Increased expressions of VIP and VPAC2 receptors, as well as a disordered distribution of F-actin were found in SC endothelial cells (SCEs) in the EVC model. Moreover, topical VIP maintained the normal distribution of F-actin in SCEs, expanded the collapsed SC, and induced a significant decrease in IOP in the EVC model. In in vitro HUVECs, the F-actin/G-actin ratio increased significantly under stress stimulation for 30 minutes. A total of 50 µM VIP helped maintain the normal F-actin/G-actin ratio of HUVECs against stress stimulation. Conclusions: VIP regulates the distribution of F-actin in SCEs via the VPAC2 receptor in order to induce a decrease in IOP. VIP may represent a new target for antiglaucoma drugs.


Asunto(s)
Actinas/metabolismo , Modelos Animales de Enfermedad , Presión Intraocular/efectos de los fármacos , Limbo de la Córnea/efectos de los fármacos , Hipertensión Ocular/tratamiento farmacológico , Receptores de Tipo II del Péptido Intestinal Vasoactivo/metabolismo , Péptido Intestinal Vasoactivo/farmacología , Animales , Western Blotting , Enfermedad Crónica , Técnica del Anticuerpo Fluorescente Indirecta , Células Endoteliales de la Vena Umbilical Humana , Humanos , Presión Intraocular/fisiología , Limbo de la Córnea/metabolismo , Masculino , Hipertensión Ocular/metabolismo , Ratas , Ratas Sprague-Dawley , Tonometría Ocular , Malla Trabecular/efectos de los fármacos , Malla Trabecular/metabolismo
20.
Immunol Lett ; 94(1-2): 35-7, 2004 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-15234532

RESUMEN

Interleukin-18 (IL-18) plays an important role in innate and acquired immunity. IL-18 gene deficient (IL-18-/-) mice of the 129 x CD1 strain were reported to be more susceptible to Leishmania major infection than the wild-type mice. In contrast IL-18-/- mice of the C57BL/6 background were found to be as resistant as the wild-type (WT) mice. To resolve this discrepancy, IL-18 gene deficiency was introduced by backcrossing on to the highly susceptible BALB/c, or the moderately resistant DBA/1 backgrounds. Here we have demonstrated that BALB/c IL-18-/- mice were more resistant to L. major infection than WT BALB/c mice, whereas DBA/1 IL-18-/- mice were markedly more susceptible than their WT littermates. BALB/c IL-18-/- mice produced less IFNgamma and IL-4, whereas DBA/1 IL-18ko mice produced more IFNgamma and IL-4 than their respective WT controls. These result clearly demonstrate that the role of IL-18 in resistance or susceptibility to L. major is determined by host genetic background.


Asunto(s)
Interleucina-18/genética , Leishmania major , Leishmaniasis Cutánea/genética , Animales , Susceptibilidad a Enfermedades/inmunología , Interferón gamma/análisis , Interleucina-4/análisis , Leishmaniasis Cutánea/inmunología , Activación de Linfocitos , Ratones , Ratones Noqueados , Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA