Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
3 Biotech ; 11(7): 335, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34221806

RESUMEN

Limb ischemia reperfusion (I/R) triggers local or systemic injury, and whether the process is mediated by pyroptosis remains unclear, we aimed to explore whether pyroptosis was involved in the process of rapamycin alleviating lung injury induced by I/R and investigate the molecular mechanisms. The histopathology of lung injury induced by I/R was confirmed by hematoxylin-eosin (HE) staining, and malondialdehyde (MDA), superoxide dismutase (SOD), and the expression of pyroptosis related molecules were detected. RNA sequencing was used to mine key long non-coding RNAs (lncRNAs). The model of lipopolysaccharide (LPS)-induced L2 cell damage was also used to explore the effect and mechanism of rapamycin on lncRNA. Rapamycin treatment alleviated I/R-induced lung histopathologically injury and increased the concentration of MDA while decreased activity of SOD and expression of NLRP3, Caspase-1, interleukin-1ß (IL-1ß), and IL-18 in rat. A total of 63 differentially expressed lncRNAs (DElncRNAs) were identified from IR + Rap group compared with IR group, and these DElncRNAs were mainly involved in cell adhesion molecules (CAMs) and endocytosis pathway. The lncRNA LOC102553434 and its target gene MMP9 were most significantly up-regulated in I/R-injured rat. In vitro experiments showed that LPS induction caused a significant increase in LOC102553434, MMP9, IL-1ß, and IL-18 in L2 cells, but rapamycin treatment significantly reversed the effects. After interfering with the expression of LOC102553434 in the LPS-injured cells pretreated with rapamycin, cell proliferation significantly increased, and the expression of MMP, NLRP3 and caspase-1 were significantly decreased. Rapamycin protects the lung from limb I/R injury by regulating LOC102553434 expression and inhibiting pyroptosis pathway. LOC102553434 plays a role in promoting pyroptosis and thus provides a target for clinical treatment of I/R-induced lung injury. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02708-9.

2.
Kaohsiung J Med Sci ; 37(7): 594-603, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33611829

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disorder. Although numerous studies on COPD have been conducted, therapeutic strategies for COPD are limited, and its pathological mechanism is still unclear. The present study aimed to explore the role of DNA methyltransferase 3a (DNMT3a) in dendritic cells (DCs) and the possible role of the Th-17/Treg cell balance in COPD. Immature DCs (iDCs) were induced and cocultured with CD4+ T cells. An in vitro COPD model was established by treatment with cigarette smoke extract (CSE). DNMT3a or allograft inflammatory factor 1 (AIF1) and c-Jun N-terminal kinase (JNK) were inhibited and overexpressed, respectively, by transfection with sh-DNMT3a or sh-AIF1 and JNK overexpression plasmids. The 3- (4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used to measure cell viability. The Th17/Treg cell ratio was determined by flow cytometry. The expression levels of DNMT3a, c-Jun and AIF1 were measured using RT-qPCR or western blotting. Chromatin immunoprecipitation (CHIP) was used to confirm the interaction between c-Jun and the AIF1 promoter region. CSE stimulation promoted the expression of DNMT3a, and AIF1, and the ratio of p-c-Jun/c-Jun in iDCs. Besides, the iDC-mediated differentiation of Th17 cells was in a dose-dependent manner. However, knockdown of DNMT3a or AIF1 reversed the above effects caused by CSE. Inhibition of c-Jun signaling by treatment with the JNK inhibitor SP600125 also suppressed the iDC-mediated differentiation of Th17 cells, which was promoted by CSE. CHIP analysis showed that c-Jun could bind to the promoter region of AIF1. DNMT3a could regulate the iDC-mediated Th17/Treg balance by regulating the c-Jun/AIF1 axis.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , ADN Metiltransferasa 3A/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Humo , Fumar/efectos adversos , Linfocitos T Reguladores/metabolismo , Aloinjertos , Animales , Antracenos/farmacología , Linfocitos T CD4-Positivos/citología , Diferenciación Celular , Células Cultivadas , Células Dendríticas/metabolismo , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Enfermedad Pulmonar Obstructiva Crónica/genética , Transducción de Señal , Sales de Tetrazolio/farmacología , Células Th17/metabolismo , Tiazoles/farmacología
3.
Turk Neurosurg ; 26(6): 922-929, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27476919

RESUMEN

AIM: Spinal cord injury (SCI) is a serious condition of the central nervous system and it affects the quality of life and even hampers the day-to-day activity of the patient. In the current study, we investigated the efficacy of intrathecal administration of flavopiridol in an experimental animal model of SCI. The study also aimed at exploring the physiological effects of flavopiridol on neurons, astrocytes and cell cycle regulatory proteins. MATERIAL AND METHODS: In vitro scratch wound experiments were performed on female Sprague-Dawley rats (n=23). A complete hemisection to the right of T10 was made, and flavopiridol solution (200 mM, 0.8 nmol flavopiridol/animal) was delivered topically to the lesion site. Cell viability assay, in vitro scratch injury assay, cell cycle analysis using flow cytometry and behavioural assessments were performed. RESULTS: The local delivery of flavopiridol reduced cavity formation and improved regeneration of neurons with improvement in physiological performance. Flavopiridol also inhibited the migration and proliferation of astrocytes, and at the same time, promoted the survival of neurons. CONCLUSION: Intrathecal administration of flavopiridol can be a promising treatment strategy in patients with SCI and it needs to be validated in patient setting.


Asunto(s)
Flavonoides/administración & dosificación , Flavonoides/farmacología , Regeneración Nerviosa/efectos de los fármacos , Piperidinas/administración & dosificación , Piperidinas/farmacología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Administración Tópica , Animales , Astrocitos/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Flavonoides/uso terapéutico , Neuronas/efectos de los fármacos , Piperidinas/uso terapéutico , Ratas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA