Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Oncogene ; 42(43): 3161-3168, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37752235

RESUMEN

Prostate cancer progression is connected to the activity of conventional oncogenes and tumour suppressors and driven by circulating steroid hormones. A key issue has been how to identify and care for aggressively developing prostate tumours. Here we discuss how expression of the splicing regulators ESRP1 and ESRP2, and how their role as "masterminds" of epithelial splicing patterns, have been identified as markers of aggressively proliferating prostate primary tumours. We suggest that the origin of prostate cancer within epithelial cells, and the subsequent association of ESRP1 and ESRP2 expression with more aggressive disease progression, identify ESRP1 and ESRP2 as lineage survival oncogenes. To move this field on in the future it will be important to identify the gene expression targets controlled by ESRP1/2 that regulate prostate cancer proliferation. Potential future therapies could be designed to target ESRP1 and ESRP2 protein activity or their regulated splice isoforms in aggressive prostate tumours. Design of these therapies is potentially complicated by the risk of producing a more mesenchymal splicing environment that might promote tumour metastasis.

2.
J Clin Invest ; 133(22)2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37751307

RESUMEN

Aberrant androgen receptor (AR) signaling drives prostate cancer (PC), and it is a key therapeutic target. Although initially effective, the generation of alternatively spliced AR variants (AR-Vs) compromises efficacy of treatments. In contrast to full-length AR (AR-FL), AR-Vs constitutively activate androgenic signaling and are refractory to the current repertoire of AR-targeting therapies, which together drive disease progression. There is an unmet clinical need, therefore, to develop more durable PC therapies that can attenuate AR-V function. Exploiting the requirement of coregulatory proteins for AR-V function has the capacity to furnish tractable routes for attenuating persistent oncogenic AR signaling in advanced PC. DNA-PKcs regulates AR-FL transcriptional activity and is upregulated in both early and advanced PC. We hypothesized that DNA-PKcs is critical for AR-V function. Using a proximity biotinylation approach, we demonstrated that the DNA-PK holoenzyme is part of the AR-V7 interactome and is a key regulator of AR-V-mediated transcription and cell growth in models of advanced PC. Crucially, we provide evidence that DNA-PKcs controls global splicing and, via RBMX, regulates the maturation of AR-V and AR-FL transcripts. Ultimately, our data indicate that targeting DNA-PKcs attenuates AR-V signaling and provide evidence that DNA-PKcs blockade is an effective therapeutic option in advanced AR-V-positive patients with PC.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Masculino , Humanos , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/genética , Dominio Catalítico , Línea Celular Tumoral , Andrógenos/uso terapéutico , ADN , Regulación Neoplásica de la Expresión Génica
3.
Cell Cycle ; 21(3): 219-227, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34927545

RESUMEN

High levels of transcription and alternative splicing are recognized hallmarks of gene expression in the testis and largely driven by cells in meiosis. Because of this, the male meiosis stage of the cell cycle is often viewed as having a relatively permissive environment for gene expression. In this review, we highlight recent findings that identify the RNA binding protein RBMXL2 as essential for male meiosis. RBMXL2 functions as a "guardian of the transcriptome" that protects against the use of aberrant (or "cryptic") splice sites that would disrupt gene expression. This newly discovered protective role during meiosis links with a wider field investigating mechanisms of cryptic splicing control that protect neurons from amyotrophic lateral sclerosis and Alzheimer's disease. We discuss how the mechanism repressing cryptic splicing patterns during meiosis evolved, and why it may be essential for sperm production and male fertility.


Asunto(s)
Infertilidad Masculina , Enfermedades del Sistema Nervioso , Empalme Alternativo/genética , Femenino , Humanos , Infertilidad Masculina/genética , Masculino , Neuronas , Empalme del ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA