Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sci Rep ; 12(1): 16995, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36216965

RESUMEN

Due to low contrast and the blurred boundary between liver tissue and neighboring organs sharing similar intensity values, the problem of liver segmentation from CT images has not yet achieved satisfactory performance and remains a challenge. To alleviate these problems, we introduce deep supervision (DS) and atrous inception (AI) technologies with conditional random field (CRF) and propose three major improvements that are experimentally shown to have substantive and practical value. First, we replace the encoder's standard convolution with the residual block. Residual blocks can increase the depth of the network. Second, we provide an AI module to connect the encoder and decoder. AI allows us to obtain multi-scale features. Third, we incorporate the DS mechanism into the decoder. This helps to make full use of information of the shallow layers. In addition, we employ the Tversky loss function to balance the segmented and non-segmented regions and perform further refinement with a dense CRF. Finally, we extensively validate the proposed method on three public databases: LiTS17, 3DIRCADb, and SLiver07. Compared to the state-of-the-art methods, the proposed method achieved increased segmentation accuracy for the livers with low contrast and the fuzzy boundary between liver tissue and neighboring organs and is, therefore, more suited for automatic segmentation of these livers.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Hígado , Procesamiento de Imagen Asistido por Computador/métodos , Hígado/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos
2.
J Digit Imaging ; 35(6): 1479-1493, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35711074

RESUMEN

This paper proposes a new network framework, which leverages EfficientNetB4, attention gate, and residual learning techniques to achieve automatic and accurate liver segmentation. First, we use EfficientNetB4 as the encoder to extract more feature information during the encoding stage. Then, an attention gate is introduced in the skip connection to eliminate irrelevant regions and highlight features of a specific segmentation task. Finally, to alleviate the problem of gradient vanishment, we replace the traditional convolution of the decoder with a residual block to improve the segmentation accuracy. We verified the proposed method on the LiTS17 and SLiver07 datasets and compared it with classical networks such as FCN, U-Net, attention U-Net, and attention Res-U-Net. In the Sliver07 evaluation, the proposed method achieved the best segmentation performance on all five standard metrics. Meanwhile, in the LiTS17 assessment, the best performance is obtained except for a slight inferior on RVD. The proposed method's qualitative and quantitative results demonstrated its applicability in liver segmentation and proved its good prospect in computer-assisted liver segmentation.


Asunto(s)
Aprendizaje , Hígado , Humanos , Hígado/diagnóstico por imagen , Progresión de la Enfermedad , Tomografía Computarizada por Rayos X , Procesamiento de Imagen Asistido por Computador
3.
Math Biosci Eng ; 19(5): 4703-4718, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35430836

RESUMEN

Purpose: Due to the complex distribution of liver tumors in the abdomen, the accuracy of liver tumor segmentation cannot meet the needs of clinical assistance yet. This paper aims to propose a new end-to-end network to improve the segmentation accuracy of liver tumors from CT. Method: We proposed a hybrid network, leveraging the residual block, the context encoder (CE), and the Attention-Unet, called ResCEAttUnet. The CE comprises a dense atrous convolution (DAC) module and a residual multi-kernel pooling (RMP) module. The DAC module ensures the network derives high-level semantic information and minimizes detailed information loss. The RMP module improves the ability of the network to extract multi-scale features. Moreover, a hybrid loss function based on cross-entropy and Tversky loss function is employed to distribute the weights of the two-loss parts through training iterations. Results: We evaluated the proposed method in LiTS17 and 3DIRCADb databases. It significantly improved the segmentation accuracy compared to state-of-the-art methods. Conclusions: Experimental results demonstrate the satisfying effects of the proposed method through both quantitative and qualitative analyses, thus proving a promising tool in liver tumor segmentation.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Neoplasias Hepáticas , Atención , Progresión de la Enfermedad , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Redes Neurales de la Computación , Tomografía Computarizada por Rayos X
4.
Math Biosci Eng ; 19(2): 1426-1447, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35135211

RESUMEN

This paper proposes an improved ResU-Net framework for automatic liver CT segmentation. By employing a new loss function and data augmentation strategy, the accuracy of liver segmentation is improved, and the performance is verified on two public datasets LiTS17 and SLiver07. Firstly, to speed up the convergence of the model, the residual module is used to replace the original convolution module of U-Net. Secondly, to suppress the problem of pixel imbalance, the opposite number of Dice is proposed to replace the cross-entropy loss function, and the morphological method is introduced to weigh the pixels. Finally, to improve the generalization ability of the model, random affine transformation and random elastic deformation are employed for data augmentation. From 20 training datasets of Sliver07, 16 sets were selected as the training set, two sets were used for verification, and two sets were used for the test; meanwhile, from 131 training datasets of LiTS2017, eight sets were selected as the test set. In the experiment, four evaluation metrics, including DICE global, DICE per case, VOE, and RVD, were calculated, with the accuracies of 94.28, 94.24 ± 2.07, 10.83 ± 3.70, and -0.25 ± 2.74, respectively. Compared with U-Net and ResU-Net, the performance of the proposed method is significantly improved. The experimental results show that, although the method's complexity is high, it has a faster convergence speed and stronger generalization ability. The segmentation effect on the 2D image is significantly improved, and the scalability on 3D data is also robust. In addition, the proposed method performs well in the case of low-contrast neighboring organs, which proves the robustness of the proposed method.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Neoplasias Hepáticas , Progresión de la Enfermedad , Humanos , Tomografía Computarizada por Rayos X
5.
Comput Math Methods Med ; 2021: 5976097, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34422093

RESUMEN

METHODS: A new SERR-U-Net framework for retinal vessel segmentation is proposed, which leverages technologies including Squeeze-and-Excitation (SE), residual module, and recurrent block. First, the convolution layers of encoder and decoder are modified on the basis of U-Net, and the recurrent block is used to increase the network depth. Second, the residual module is utilized to alleviate the vanishing gradient problem. Finally, to derive more specific vascular features, we employed the SE structure to introduce attention mechanism into the U-shaped network. In addition, enhanced super-resolution generative adversarial networks (ESRGANs) are also deployed to remove the noise of retinal image. RESULTS: The effectiveness of this method was tested on two public datasets, DRIVE and STARE. In the experiment of DRIVE dataset, the accuracy and AUC (area under the curve) of our method were 0.9552 and 0.9784, respectively, and for SATRE dataset, 0.9796 and 0.9859 were achieved, respectively, which proved a high accuracy and promising prospect on clinical assistance. CONCLUSION: An improved U-Net network combining SE, ResNet, and recurrent technologies is developed for automatic vessel segmentation from retinal image. This new model enables an improvement on the accuracy compared to learning-based methods, and its robustness in circumvent challenging cases such as small blood vessels and intersection of vessels is also well demonstrated and validated.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Redes Neurales de la Computación , Vasos Retinianos/patología , Algoritmos , Biología Computacional , Bases de Datos Factuales/estadística & datos numéricos , Aprendizaje Profundo , Humanos , Interpretación de Imagen Asistida por Computador/estadística & datos numéricos , Vasos Retinianos/anatomía & histología , Retinoscopía/estadística & datos numéricos
6.
Comput Methods Programs Biomed ; 208: 106268, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34274611

RESUMEN

BACKGROUND AND OBJECTIVE: Liver segmentation is an essential prerequisite for liver cancer diagnosis and surgical planning. Traditionally, liver contour is delineated manually by radiologist in a slice-by-slice fashion. However, this process is time-consuming and prone to errors depending on radiologist's experience. In this paper, a modified U-Net based framework is presented, which leverages techniques from Squeeze-and-Excitation (SE) block, Atrous Spatial Pyramid Pooling (ASPP) and residual learning for accurate and robust liver Computed Tomography (CT) segmentation, and the effectiveness of the proposed method was tested on two public datasets LiTS17 and SLiver07. METHODS: A new network architecture, called SAR-U-Net was designed, which is grounded in the classical U-Net. Firstly, the SE block is introduced to adaptively extract image features after each convolution in the U-Net encoder, while suppressing irrelevant regions, and highlighting features of specific segmentation task; Secondly, the ASPP is employed to replace the transition layer and the output layer, and acquire multi-scale image information via different receptive fields. Thirdly, to alleviate the gradient vanishment problem, the traditional convolution block is replaced with the residual structures, and thus prompt the network to gain accuracy from considerably increased depth. RESULTS: In the LiTS17 database experiment, five popular metrics were used for evaluation, including Dice coefficient, VOE, RVD, ASD and MSD. Compared with other closely related models, the proposed method achieved the highest accuracy. In addition, in the experiment of the SLiver07 dataset, compared with other closely related models, the proposed method achieved the highest segmentation accuracy except for the RVD. CONCLUSION: An improved U-Net network combining SE, ASPP, and residual structures is developed for automatic liver segmentation from CT images. This new model shows a great improvement on the accuracy compared to other closely related models, and its robustness to challenging problems, including small liver regions, discontinuous liver regions, and fuzzy liver boundaries, is also well demonstrated and validated.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Neoplasias Hepáticas , Progresión de la Enfermedad , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA