Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Biol ; 22(4): e3002611, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38683880

RESUMEN

As tissues grow and change shape during animal development, they physically pull and push on each other, and these mechanical interactions can be important for morphogenesis. During Drosophila gastrulation, mesoderm invagination temporally overlaps with the convergence and extension of the ectodermal germband; the latter is caused primarily by Myosin II-driven polarised cell intercalation. Here, we investigate the impact of mesoderm invagination on ectoderm extension, examining possible mechanical and mechanotransductive effects on Myosin II recruitment and polarised cell intercalation. We find that the germband ectoderm is deformed by the mesoderm pulling in the orthogonal direction to germband extension (GBE), showing mechanical coupling between these tissues. However, we do not find a significant change in Myosin II planar polarisation in response to mesoderm invagination, nor in the rate of junction shrinkage leading to neighbour exchange events. We conclude that the main cellular mechanism of axis extension, polarised cell intercalation, is robust to the mesoderm invagination pull. We find, however, that mesoderm invagination slows down the rate of anterior-posterior cell elongation that contributes to axis extension, counteracting the tension from the endoderm invagination, which pulls along the direction of GBE.


Asunto(s)
Drosophila melanogaster , Ectodermo , Gastrulación , Mesodermo , Miosina Tipo II , Animales , Mesodermo/embriología , Mesodermo/citología , Gastrulación/fisiología , Ectodermo/citología , Ectodermo/embriología , Ectodermo/metabolismo , Miosina Tipo II/metabolismo , Drosophila melanogaster/embriología , Polaridad Celular , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Embrión no Mamífero , Morfogénesis , Tipificación del Cuerpo/fisiología , Drosophila/embriología
2.
Nat Commun ; 13(1): 3348, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35688832

RESUMEN

Cell apical constriction driven by actomyosin contraction forces is a conserved mechanism during tissue folding in embryo development. While much is now understood of the molecular mechanism responsible for apical constriction and of the tissue-scale integration of the ensuing in-plane deformations, it is still not clear if apical actomyosin contraction forces are necessary or sufficient per se to drive tissue folding. To tackle this question, we use the Drosophila embryo model system that forms a furrow on the ventral side, initiating mesoderm internalization. Past computational models support the idea that cell apical contraction forces may not be sufficient and that active or passive cell apico-basal forces may be necessary to drive cell wedging leading to tissue furrowing. By using 3D computational modelling and in toto embryo image analysis and manipulation, we now challenge this idea and show that embryo-scale force balance at the tissue surface, rather than cell-autonomous shape changes, is necessary and sufficient to drive a buckling of the epithelial surface forming a furrow which propagates and initiates embryo gastrulation.


Asunto(s)
Actomiosina , Gastrulación , Actomiosina/metabolismo , Animales , Forma de la Célula , Drosophila , Drosophila melanogaster , Embrión no Mamífero/metabolismo , Desarrollo Embrionario , Morfogénesis
3.
PLoS Comput Biol ; 13(3): e1005443, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28346461

RESUMEN

Downstream of gene expression, effectors such as the actomyosin contractile machinery drive embryo morphogenesis. During Drosophila embryonic axis extension, actomyosin has a specific planar-polarised organisation, which is responsible for oriented cell intercalation. In addition to these cell rearrangements, cell shape changes also contribute to tissue deformation. While cell-autonomous dynamics are well described, understanding the tissue-scale behaviour challenges us to solve the corresponding mechanical problem at the scale of the whole embryo, since mechanical resistance of all neighbouring epithelia will feedback on individual cells. Here we propose a novel numerical approach to compute the whole-embryo dynamics of the actomyosin-rich apical epithelial surface. We input in the model specific patterns of actomyosin contractility, such as the planar-polarisation of actomyosin in defined ventro-lateral regions of the embryo. Tissue strain rates and displacements are then predicted over the whole embryo surface according to the global balance of stresses and the material behaviour of the epithelium. Epithelia are modelled using a rheological law that relates the rate of deformation to the local stresses and actomyosin anisotropic contractility. Predicted flow patterns are consistent with the cell flows observed when imaging Drosophila axis extension in toto, using light sheet microscopy. The agreement between model and experimental data indicates that the anisotropic contractility of planar-polarised actomyosin in the ventro-lateral germband tissue can directly cause the tissue-scale deformations of the whole embryo. The three-dimensional mechanical balance is dependent on the geometry of the embryo, whose curved surface is taken into account in the simulations. Importantly, we find that to reproduce experimental flows, the model requires the presence of the cephalic furrow, a fold located anteriorly of the extending tissues. The presence of this geometric feature, through the global mechanical balance, guides the flow and orients extension towards the posterior end.


Asunto(s)
Actomiosina/fisiología , Drosophila/embriología , Drosophila/fisiología , Embrión no Mamífero/fisiología , Desarrollo Embrionario/fisiología , Modelos Biológicos , Animales , Tipificación del Cuerpo/fisiología , Simulación por Computador , Embrión no Mamífero/embriología , Mecanotransducción Celular/fisiología , Proteínas Motoras Moleculares/fisiología , Estrés Mecánico
4.
PLoS Biol ; 13(11): e1002292, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26544693

RESUMEN

How genetic programs generate cell-intrinsic forces to shape embryos is actively studied, but less so how tissue-scale physical forces impact morphogenesis. Here we address the role of the latter during axis extension, using Drosophila germband extension (GBE) as a model. We found previously that cells elongate in the anteroposterior (AP) axis in the extending germband, suggesting that an extrinsic tensile force contributed to body axis extension. Here we further characterized the AP cell elongation patterns during GBE, by tracking cells and quantifying their apical cell deformation over time. AP cell elongation forms a gradient culminating at the posterior of the embryo, consistent with an AP-oriented tensile force propagating from there. To identify the morphogenetic movements that could be the source of this extrinsic force, we mapped gastrulation movements temporally using light sheet microscopy to image whole Drosophila embryos. We found that both mesoderm and endoderm invaginations are synchronous with the onset of GBE. The AP cell elongation gradient remains when mesoderm invagination is blocked but is abolished in the absence of endoderm invagination. This suggested that endoderm invagination is the source of the tensile force. We next looked for evidence of this force in a simplified system without polarized cell intercalation, in acellular embryos. Using Particle Image Velocimetry, we identify posteriorwards Myosin II flows towards the presumptive posterior endoderm, which still undergoes apical constriction in acellular embryos as in wildtype. We probed this posterior region using laser ablation and showed that tension is increased in the AP orientation, compared to dorsoventral orientation or to either orientations more anteriorly in the embryo. We propose that apical constriction leading to endoderm invagination is the source of the extrinsic force contributing to germband extension. This highlights the importance of physical interactions between tissues during morphogenesis.


Asunto(s)
Drosophila/embriología , Embrión no Mamífero/anatomía & histología , Endodermo/embriología , Gastrulación , Modelos Anatómicos , Morfogénesis , Animales , Biomarcadores/metabolismo , Forma de la Célula , Tamaño de la Célula , Drosophila/genética , Drosophila/metabolismo , Drosophila/ultraestructura , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrión no Mamífero/metabolismo , Embrión no Mamífero/ultraestructura , Endodermo/metabolismo , Endodermo/ultraestructura , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Fenómenos Mecánicos , Proteínas de la Fusión de la Membrana/genética , Proteínas de la Fusión de la Membrana/metabolismo , Microscopía Electrónica de Rastreo/veterinaria , Microscopía por Video/veterinaria , Mutación , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Reología , Imagen de Lapso de Tiempo/veterinaria , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismo
5.
Development ; 141(20): 4006-17, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25294944

RESUMEN

A key challenge in the post-genomic area is to identify the function of the genes discovered, with many still uncharacterised in all metazoans. A first step is transcription pattern characterisation, for which we now have near whole-genome coverage in Drosophila. However, we have much more limited information about the expression and subcellular localisation of the corresponding proteins. The Cambridge Protein Trap Consortium generated, via piggyBac transposition, over 600 novel YFP-trap proteins tagging just under 400 Drosophila loci. Here, we characterise the subcellular localisations and expression patterns of these insertions, called the CPTI lines, in Drosophila embryos. We have systematically analysed subcellular localisations at cellularisation (stage 5) and recorded expression patterns at stage 5, at mid-embryogenesis (stage 11) and at late embryogenesis (stages 15-17). At stage 5, 31% of the nuclear lines (41) and 26% of the cytoplasmic lines (67) show discrete localisations that provide clues on the function of the protein and markers for organelles or regions, including nucleoli, the nuclear envelope, nuclear speckles, centrosomes, mitochondria, the endoplasmic reticulum, Golgi, lysosomes and peroxisomes. We characterised the membranous/cortical lines (102) throughout stage 5 to 10 during epithelial morphogenesis, documenting their apico-basal position and identifying those secreted in the extracellular space. We identified the tricellular vertices as a specialized membrane domain marked by the integral membrane protein Sidekick. Finally, we categorised the localisation of the membranous/cortical proteins during cytokinesis.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas Luminiscentes/química , Animales , Núcleo Celular/metabolismo , Centrosoma/metabolismo , Citocinesis , Citoplasma/metabolismo , Perfilación de la Expresión Génica , Técnicas Genéticas , Proteínas Fluorescentes Verdes/química , Mitocondrias/metabolismo
6.
Curr Top Dev Biol ; 95: 145-87, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21501751

RESUMEN

During morphogenesis, tissues are shaped by cell behaviors such as apical cell constriction and cell intercalation, which are the result of cell intrinsic forces, but are also shaped passively by forces acting on the cells. The latter extrinsic forces can be produced either within the deforming tissue by the tissue-scale integration of intrinsic forces, or outside the tissue by other tissue movements or by fluid flows. Here we review the intrinsic and extrinsic forces that sculpt the epithelium of early Drosophila embryos, focusing on three conserved morphogenetic processes: tissue internalization, axis extension, and segment boundary formation. Finally, we look at how the actomyosin cytoskeleton forms force-generating structures that power these three morphogenetic events at the cell and the tissue scales.


Asunto(s)
Actomiosina/metabolismo , Citoesqueleto/fisiología , Drosophila/embriología , Desarrollo Embrionario/fisiología , Epitelio/fisiología , Morfogénesis/fisiología , Animales , Fenómenos Biomecánicos , Mesodermo/fisiología , Miosina Tipo II/fisiología
7.
J Am Soc Nephrol ; 21(1): 24-30, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19926888

RESUMEN

After the basic shape of the mammalian ureter is established, its epithelia mature and a coat of smooth muscle cells differentiate around nascent urothelia. The ureter actively propels tubular fluid from the renal pelvis to the bladder, and this peristalsis, which starts in the fetal period, requires coordinated smooth muscle contraction. Teashirt-3 (Tshz3) is expressed in smooth muscle cell precursors that form the wall of the forming mammalian ureter. The Teashirt gene family was first identified in Drosophila where Teashirt (Tsh) protein acts as a transcription factor directing embryonic anterior-posterior patterning and leg and eye development. In fly embryonic renal tubules, Tsh is expressed in mesodermally derived stellate cells intercalating between principal cells, and a paralogue, tiptop, is expressed in forming tubules. Teashirt is a component of several gene networks in flies and it is notable that similar networks control mammalian renal tract development. Null mutation of Tshz3 in mice leads to failure of functional muscularization in the top of the ureter and this is followed by congenital hydronephrosis. A signaling pathway can be envisaged, starting with sonic hedgehog secreted by the nascent ureteric urothelium and ending with ureteric smooth muscle cell differentiation, with Tshz3 downstream of bone morphogenetic protein 4 and upstream of myocardin and smooth muscle cell contractile protein synthesis. The phenotype of Tshz3 mutant mice resembles that of human congenital pelviureteric junction obstruction, and we suggest these individuals may have mutations of genes encoding molecules in the differentiation pathway mediated by Tshz3.


Asunto(s)
Desarrollo de Músculos/fisiología , Músculo Liso/fisiología , Uréter/fisiología , Animales , Modelos Animales de Enfermedad , Drosophila , Proteínas de Drosophila/fisiología , Humanos , Hidronefrosis/fisiopatología , Ratones , Ratones Noqueados , Proteínas Represoras/fisiología , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Obstrucción Ureteral/fisiopatología
8.
Nephrol Dial Transplant ; 25(1): 54-60, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19745106

RESUMEN

BACKGROUND: Congenital pelvi-ureteric junction obstruction (PUJO) affects 0.3% of human births. It may result from aberrant smooth muscle development in the renal pelvis, resulting in hydronephrosis. Mice that are null mutant for the Teashirt3 (Tshz3) gene exhibit congenital PUJO with defective smooth muscle differentiation and absent peristalsis in the proximal ureter. METHODS: Given the phenotype of Tshz3 mutant mice, we considered that Teashirt genes, which code for a family of transcription factors, might represent candidate genes for human PUJO. To evaluate this possibility, we used in situ hydridization to analyse the three mammalian Tshz genes in mouse embryonic ureters and determined whether TSHZ3 was expressed in the human embryonic ureter. TSHZ2 and TSHZ3 were sequenced in index cases with non-syndromic PUJO. RESULTS: Tshz2 and Tshz3 genes were detected in mouse ureters and TSHZ3 was expressed in the human embryonic renal pelvis. Direct sequencing of TSHZ2 and TSHZ3 did not identify any mutations in an initial cohort of 48 PUJO index cases, excluding these genes as a major cause of this condition. A polymorphic missense change (E469G) in TSHZ3 was identified at a residue highly conserved throughout evolution in all Teashirt proteins, although subsequently no significant difference between the E469G allele frequency in Albanian and Macedonian PUJO index cases (3.2%) versus 633 control individuals (1.7%) was found (P = 0.18). CONCLUSIONS: Mutations in TSHZ2 and TSHZ3 are not a major cause of PUJO, at least in Albanian and Macedonian populations. Expression of these genes in the human fetal ureter emphasizes the importance of analysing these genes in other groups of patients with renal tract malformations.


Asunto(s)
Proteínas Represoras/genética , Factores de Transcripción/genética , Obstrucción Ureteral/congénito , Obstrucción Ureteral/genética , Albania , Secuencia de Aminoácidos , Animales , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Datos de Secuencia Molecular , Mutación Missense/genética , Polimorfismo Genético/genética , Proteínas Represoras/metabolismo , República de Macedonia del Norte , Factores de Transcripción/metabolismo , Uréter/embriología , Uréter/metabolismo , Obstrucción Ureteral/etnología
9.
Development ; 135(19): 3301-10, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18776146

RESUMEN

Ureteric contractions propel foetal urine from the kidney to the urinary bladder. Here, we show that mouse ureteric smooth muscle cell (SMC) precursors express the transcription factor teashirt 3 (TSHZ3), and that Tshz3-null mutant mice have congenital hydronephrosis without anatomical obstruction. Ex vivo, the spontaneous contractions that occurred in proximal segments of wild-type embryonic ureter explants were absent in Tshz3 mutant ureters. In vivo, prior to the onset of hydronephrosis, mutant proximal ureters failed to express contractile SMC markers, whereas these molecules were detected in controls. Mutant embryonic ureters expressed Shh and Bmp4 transcripts as normal, with appropriate expression of Ptch1 and pSMAD1/5/8 in target SM precursors, whereas myocardin, a key regulator for SMC differentiation, was not expressed in Tshz3-null ureters. In wild-type embryonic renal tract explants, exogenous BMP4 upregulated Tshz3 and myocardin expression. More interestingly, in Tshz3 mutant renal tract explants, exogenous BMP4 did not improve the Tshz3 phenotype. Thus, Tshz3 is required for proximal ureteric SMC differentiation downstream of SHH and BMP4. Furthermore, the Tshz3 mutant mouse model of ;functional' urinary obstruction resembles congenital pelvi-ureteric junction obstruction, a common human malformation, suggesting that TSHZ, or related, gene variants may contribute to this disorder.


Asunto(s)
Proteína Morfogenética Ósea 4/metabolismo , Proteínas Hedgehog/metabolismo , Factores de Transcripción/metabolismo , Uréter/embriología , Uréter/metabolismo , Animales , Secuencia de Bases , Tipificación del Cuerpo , Proteína Morfogenética Ósea 4/genética , Diferenciación Celular , Cartilla de ADN/genética , Modelos Animales de Enfermedad , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Humanos , Hidronefrosis/congénito , Hidronefrosis/embriología , Hidronefrosis/genética , Mesodermo/embriología , Mesodermo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Fenotipo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Uréter/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA