Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Parasit Vectors ; 16(1): 79, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36855157

RESUMEN

BACKGROUND: Vector management programs rely on knowledge of the biology and genetic make-up of mosquitoes. Anopheles stephensi is a major invasive urban malaria vector, distributed throughout the Indian subcontinent and Middle East, and has recently been expanding its range in Africa. With the existence of three biological forms, distinctly identifiable based on the number of ridges on eggs and varying vectorial competence, An. stephensi is a perfect species for developing isofemale lines, which can be tested for insecticide susceptibility and vectorial competence of various biological forms. METHODS: We describe key steps involved in establishment and validation of isofemale lines. Isofemale colonies were further used for the characterization of insecticide susceptibility and differential vector competence. The results were statistically evaluated through descriptive and inferential statistics using Vassar Stat and Prism GraphPad software packages. RESULTS: Through a meticulous selection process, we overcame an initial inbreeding depression and found no significant morphometric differences in wings and egg size between the parental and respective isofemale lines in later generations. IndCh and IndInt strains showed variations in resistance to different insecticides belonging to all four major classes. We observed a significant change in vectorial competence between the respective isofemale and parental lines. CONCLUSIONS: Isofemale lines can be a valuable resource for characterizing and enhancing several genotypic and phenotypic traits. This is the first detailed report of the establishment of two isofemale lines of type and intermediate biological forms in Anopheles stephensi. The work encompasses characterization of fitness traits among two lines through a transgenerational study. Furthermore, isofemale colonies were established and used to characterize insecticide susceptibility and vector competence. The study provides valuable insights into differential susceptibility status of the parental and isofemale lines to different insecticides belonging to the same class. Corroborating an earlier hypothesis, we demonstrate the high vector competence of the type form relative to the intermediate form using homozygous lines. Using these lines, it is now possible to study host-parasite interactions and identify factors that might be responsible for altered susceptibility and increased vector competence in An. stephensi biological forms that would also pave the way for developing better vector management strategies.


Asunto(s)
Anopheles , Insecticidas , Malaria , Animales , Anopheles/genética , Insecticidas/farmacología , Malaria/prevención & control , Mosquitos Vectores/genética , Fenotipo
2.
Sci Rep ; 12(1): 19079, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36351999

RESUMEN

Identification of Plasmodium-resistance genes in malaria vectors remains an elusive goal despite the recent availability of high-quality genomes of several mosquito vectors. Anopheles stephensi, with its three distinctly-identifiable forms at the egg stage, correlating with varying vector competence, offers an ideal species to discover functional mosquito genes implicated in Plasmodium resistance. Recently, the genomes of several strains of An. stephensi of the type-form, known to display high vectorial capacity, were reported. Here, we report a chromosomal-level assembly of an intermediate-form of An. stephensi strain (IndInt), shown to have reduced vectorial capacity relative to a strain of type-form (IndCh). The contig level assembly with a L50 of 4 was scaffolded into chromosomes by using the genome of IndCh as the reference. The final assembly shows a heterozygous paracentric inversion, 3Li, involving 8 Mbp, which is syntenic to the extensively-studied 2La inversion implicated in Plasmodium resistance in An. gambiae involving 21 Mbp. Deep annotation of genes within the 3Li region in the IndInt assembly using the state-of-the-art protein-fold prediction and other annotation tools reveals the presence of a tumor necrosis factor-alpha (TNF-alpha) like gene, which is the homolog of the Eiger gene in Drosophila. Subsequent chromosome-wide searches revealed homologs of Wengen (Wgn) and Grindelwald (Grnd) genes, which are known to be the receptors for Eiger in Drosophila. We have identified all the genes in IndInt required for Eiger-mediated signaling by analogy to the TNF-alpha system, suggesting the presence of a functionally-active Eiger signaling pathway in IndInt. Comparative genomics of the three type-forms with that of IndInt, reveals structurally disruptive mutations in Eiger gene in all three strains of the type-form, suggesting compromised innate immunity in the type-form as the likely cause of high vectorial capacity in these strains. This is the first report of the presence of a homolog of Eiger in malaria vectors, known to be involved in cell death in Drosophila, within an inversion region in IndInt syntenic to an inversion associated with Plasmodium resistance in An. gambiae.


Asunto(s)
Anopheles , Malaria , Plasmodium , Animales , Anopheles/genética , Mosquitos Vectores/genética , Factor de Necrosis Tumoral alfa/genética , Plasmodium/genética , Inversión Cromosómica , Drosophila
3.
Eur J Med Chem ; 182: 111609, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31445229

RESUMEN

A series of new pyrazolo-benzothiazole hybrids (7-26) were synthesised and screened for their cytotoxic activity towards several cancer cell lines [colon (HT-29), prostate (PC-3), lung (A549), glioblastoma (U87MG)] and normal human embryonic kidney cell line (Hek-293T). Compounds 8, 9, 13, 14, 18, 19, 23, and 24 displayed significant activity, with compound 14 being particularly potent towards all the tested cancer cell lines with IC50 values in the range 3.17-6.77 µM, even better than reference drug axitinib (4.88-21.7 µM). Compound 14 also showed the strongest growth inhibition in 3D multicellular spheroids of PC-3 and U87MG cells. The mechanism of cellular toxicity in PC-3 cells was found to be cell cycle arrest and apoptosis induction through depolarisation of mitochondrial membrane potential, increased ROS production and subsequent DNA damage. Further, compound 14 displayed significant in vitro (VEGFR-2 inhibition) and in vivo [transgenic zebrafish Tg(flila:EGFP) model] antiangiogenic properties. Overall, these results provide strong evidence that compound 14 could be considered for a lead candidate in anticancer and antiangiogenic drug discovery.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Antineoplásicos/farmacología , Benzotiazoles/farmacología , Modelos Animales de Enfermedad , Neovascularización Patológica/tratamiento farmacológico , Pirazoles/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Inhibidores de la Angiogénesis/síntesis química , Inhibidores de la Angiogénesis/química , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Benzotiazoles/química , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Daño del ADN , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HEK293 , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Estructura Molecular , Neovascularización Patológica/metabolismo , Pirazoles/química , Relación Estructura-Actividad , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Cicatrización de Heridas/efectos de los fármacos , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA