RESUMEN
Both the quality of chicken meat and the quality of chicks are influenced by the level of breast muscle glycogen reserves. In order to study the role of digestive metabolism in establishing this muscular phenotype, we compared two divergent chicken lines for the ultimate pH (pHu) of the breast meat, a proxy for glycogen reserves. Males aged 4 weeks had twice the breast muscle glycogen content in the pHu- line (low pHu) than in the pHu + line (high pHu). The increase in glycogen reserves (pHu-) was associated with a higher relative weight of the proventriculus and gizzard, as well as better apparent ileal digestibility of nitrogen and calcium. The diversity of the cecal microbiota was comparable, but three bacterial genera (Lachnospira, Lachnospiraceae UCG-010, Caproiciproducens) varied between the lines. The differences observed could lead to down-regulation of carbon fixation in prokaryotes and of the citrate cycle in the pHu + line. RNA-seq analysis of the jejunum, the major site of nutrient absorption, revealed 149 genes differentially expressed (DE) between the lines, including several genes linked to immunity, hormonal response and circadian rhythms that are less expressed in pHu + animals. Others involved in cell migration and proliferation, and more generally tissue morphogenesis, also differed between the lines. Among the DE genes, several co-localized with Quantitative Trait Loci (QTL) controlling pHu and selection signatures identified in the divergent lines, such as the gene coding for ghrelin, a hormone regulating appetite.
Asunto(s)
Pollos , Microbioma Gastrointestinal , Glucógeno , Animales , Glucógeno/metabolismo , Pollos/microbiología , Masculino , Concentración de Iones de Hidrógeno , Músculo Esquelético/metabolismo , Carne , DigestiónRESUMEN
BACKGROUND: Nutrient availability during early stages of development (embryogenesis and the first week post-hatch) can have long-term effects on physiological functions and bird metabolism. The embryo develops in a closed structure and depends entirely on the nutrients and energy available in the egg. The aim of this study was to describe the ontogeny of pathways governing hepatic metabolism that mediates many physiological functions in the pHu + and pHu- chicken lines, which are divergently selected for the ultimate pH of meat, a proxy for muscle glycogen stores, and which differ in the nutrient content and composition of eggs. RESULTS: We identified eight clusters of genes showing a common pattern of expression between embryonic day 12 (E12) and day 8 (D8) post-hatch. These clusters were not representative of a specific metabolic pathway or function. On E12 and E14, the majority of genes differentially expressed between the pHu + and pHu- lines were overexpressed in the pHu + line. Conversely, the majority of genes differentially expressed from E18 were overexpressed in the pHu- line. During the metabolic shift at E18, there was a decrease in the expression of genes linked to several metabolic functions (e.g. protein synthesis, autophagy and mitochondrial activity). At hatching (D0), there were two distinct groups of pHu + chicks based on hierarchical clustering; these groups also differed in liver weight and serum parameters (e.g. triglyceride content and creatine kinase activity). At D0 and D8, there was a sex effect for several metabolic pathways. Metabolism appeared to be more active and oriented towards protein synthesis (RPS6) and fatty acid ß-oxidation (ACAA2, ACOX1) in males than in females. In comparison, the genes overexpressed in females were related to carbohydrate metabolism (SLC2A1, SLC2A12, FoxO1, PHKA2, PHKB, PRKAB2 and GYS2). CONCLUSIONS: Our study provides the first detailed description of the evolution of different hepatic metabolic pathways during the early development of embryos and post-hatching chicks. We found a metabolic orientation for the pHu + line towards proteolysis, glycogen degradation, ATP synthesis and autophagy, likely in response to a higher energy requirement compared with pHu- embryos. The metabolic orientations specific to the pHu + and pHu- lines are established very early, probably in relation with their different genetic background and available nutrients.
Asunto(s)
Pollos , Hígado , Animales , Pollos/genética , Pollos/crecimiento & desarrollo , Pollos/metabolismo , Hígado/metabolismo , Hígado/crecimiento & desarrollo , Concentración de Iones de Hidrógeno , Femenino , Músculos Pectorales/metabolismo , Músculos Pectorales/crecimiento & desarrollo , Masculino , Perfilación de la Expresión Génica , Embrión de Pollo , Regulación del Desarrollo de la Expresión GénicaRESUMEN
Nutrient availability in eggs can affect early metabolic orientation in birds. In chickens divergently selected on the Pectoralis major ultimate pH, a proxy for muscle glycogen stores, characterization of the yolk and amniotic fluid revealed a different nutritional environment. The present study aimed to assess indicators of embryo metabolism in pHu lines (pHu+ and pHu-) using allantoic fluids (compartment storing nitrogenous waste products and metabolites), collected at days 10, 14 and 17 of embryogenesis and characterized by 1H-NMR spectroscopy. Analysis of metabolic profiles revealed a significant stage effect, with an enrichment in metabolites at the end of incubation, and an increase in interindividual variability during development. OPLS-DA analysis discriminated the two lines. The allantoic fluid of pHu- was richer in carbohydrates, intermediates of purine metabolism and derivatives of tryptophan-histidine metabolism, while formate, branched-chain amino acids, Krebs cycle intermediates and metabolites from different catabolic pathways were more abundant in pHu+. In conclusion, the characterization of the main nutrient sources for embryos and now allantoic fluids provided an overview of the in ovo nutritional environment of pHu lines. Moreover, this study revealed the establishment, as early as day 10 of embryo development, of specific metabolic signatures in the allantoic fluid of pHu+ and pHu- lines.
Asunto(s)
Pollos , Músculo Esquelético , Animales , Pollos/metabolismo , Músculo Esquelético/metabolismo , Glucógeno/metabolismo , Músculos Pectorales/fisiología , MetabolomaRESUMEN
Two divergently selected broiler lines were created by selection for low (pHu-) or high (pHu+) Pectoralis major ultimate pH (pHu) in order to better understand the molecular mechanisms underlying meat quality traits in broilers and are also unique genetic resources reflecting low and high glycogen levels in chicken muscle. The present study aimed to reveal the correlated phenotypical changes of egg quality traits in broiler breeders from the 2 divergent lines at the 14th generation. Birds were reared on littered floor system until 18 wk of age and in individual cages up to 42 wk. Individual egg production was recorded daily from age at first egg to 42 wk. External (egg weight: EW and shape index: SI), internal (albumen height: AH, Haugh unit: HU, yolk index: YI, and yolk color: YC), and shell (shell percentage: ESP, thickness: EST and strength: ESS) characteristics of eggs in pHu- and pHu+ lines were measured in all eggs for 4 consecutive days at 26, 27, 28, 30, 31, 32, 41, and 42 wk of age. The pHu- line had significantly higher egg percentage than pHu+ (55.9 and 49.1%, respectively). The EW in pHu- line (57.2 g) was significantly lower than in pHu+ (59.0 g) and increased with age in both lines. The mean ESP, EST and ESS were lower in the pHu+ eggs compared to the pHu- line. ESP and EST decreased mainly from 26 to 27 wk of age and they had a stable trend with advancing age in the remaining weeks. AH and YI were lower in pHu- line eggs than in pHu+. YC was more intense and HU higher in pHu+ eggs than pHu- in pre-peak and peak laying period. In conclusion, these results showed that a divergent selection for muscle energy metabolism has led to correlated responses on internal and external egg quality traits and suggest that the production of good-quality eggs may be impaired in broiler breeders with low energy reserves.
Asunto(s)
Pollos , Músculos Pectorales , Animales , Pollos/genética , Óvulo , Carne/análisis , Concentración de Iones de Hidrógeno , HuevosRESUMEN
Background: Chicken meat has become a major source of protein for human consumption. However, the quality of the meat is not yet under control, especially since pH values that are too low or too high are often observed. In an attempt to get a better understanding of the genetic and biochemical determinants of the ultimate pH, two genetic lines of broilers were divergently selected for low (pHu-) or high (pHu+) breast meat pHu. In this study, the serum lipidome of 17-day-old broilers from both lines was screened for pHu markers using liquid-chromatography coupled with mass spectrometry (LC-HRMS). Results: A total of 185 lipids belonging to 4 groups (glycerolipids, glycerophospholipids, sterols, sphingolipids) were identified in the sera of 268 broilers from the pHu lines by targeted lipidomics. The glycerolipids, which are involved in energy storage, were in higher concentration in the blood of pHu- birds. The glycerophospholipids (phosphatidylcholines, phosphatidylethanolamines) with long and polyunsaturated acyl chains were more abundant in pHu+ than in pHu- while the lysophosphatidylcholines and lysophosphatidylethanolamines, known to be associated with starch, were observed in higher quantity in the serum of the pHu- line. Finally, the concentration of the sterols and the ceramides, belonging to the sphingolipids class, were higher in the pHu+ and pHu-, respectively. Furthermore, orthogonal partial least-squares analyses highlighted a set of 68 lipids explaining 77% of the differences between the two broilers lines (R2Y = 0.77, Q2 = 0.67). Among these lipids, a subset of 40 predictors of the pHu value was identified with a Root Mean Squared Error of Estimation of 0.18 pH unit (R2Y = 0.69 and Q2 = 0.62). The predictive model of the pHu value was externally validated on 68 birds with a Root Mean Squared Error of Prediction of 0.25 pH unit. Conclusion: The sets of molecules identified will be useful for a better understanding of relationship between serum lipid profile and meat quality, and will contribute to define easily accessible pHu biomarkers on live birds that could be useful in genetic selection.
RESUMEN
The pHu+ and pHu- lines, which were selected based on the ultimate pH (pHu) of the breast muscle, represent a unique model to study the genetic and physiological controls of muscle energy store in relation with meat quality in chicken. Indeed, pHu+ and pHu- chicks show differences in protein and energy metabolism soon after hatching, associated with a different ability to use energy sources in the muscle. The present study aimed to assess the extent to which the nutritional environment of the embryo might contribute to the metabolic differences observed between the two lines at hatching. Just before incubation (E0), the egg yolk of pHu+ exhibited a higher lipid percentage compared to the pHu- line (32.9% vs. 27.7%). Although 1H-NMR spectroscopy showed clear changes in egg yolk composition between E0 and E10, there was no line effect. In contrast, 1H-NMR analysis performed on amniotic fluid at embryonic day 10 (E10) clearly discriminated the two lines. The amniotic fluid of pHu+ was richer in leucine, isoleucine, 2-oxoisocaproate, citrate and glucose, while choline and inosine were more abundant in the pHu- line. Our results highlight quantitative and qualitative differences in metabolites and nutrients potentially available to developing embryos, which could contribute to metabolic and developmental differences observed after hatching between the pHu+ and pHu- lines.
Asunto(s)
Pollos , Cigoto , Animales , Pollos/genética , Concentración de Iones de Hidrógeno , Carne/análisis , Músculo Esquelético/metabolismo , NutrientesRESUMEN
In chickens, a divergent selection on the Pectoralis major pHu allowed the creation of the pHu+ and pHu- lines, which represent a unique model for studying the biological control of carbohydrate storage in muscle. The present study aimed to describe the early mechanisms involved in the establishment of pHu+ and pHu- phenotypes. At hatching, pHu+ chicks were slightly heavier but exhibited lower plasma glucose and triglyceride and higher uric acid. After 5 days, pHu+ chicks exhibited higher breast meat yield compared to pHu- while their body weight was no different. At both ages, in vivo muscle glycogen content was lower in pHu+ than in pHu- muscles. The lower ability of pHu+ chicks to store carbohydrate in their muscle was associated with the increased expression of SLC2A1 and SLC2A3 genes coding glucose transporters 1 and 3, and of CS and LDHα coding key enzymes of oxidative and glycolytic pathways, respectively. Reduced muscle glycogen content at hatching of the pHu+ was concomitant with higher activation by phosphorylation of S6 kinase 1/ribosomal protein S6 pathway, known to activate protein synthesis in chicken muscle. In conclusion, differences observed in muscle at slaughter age in the pHu+ and pHu- lines are already present at hatching. They are associated with several changes related to both carbohydrate and protein metabolism, which are likely to affect their ability to use eggs or exogenous nutrients for muscle growth or energy storage.
RESUMEN
In reproductive hens, a feed restriction is an usual practice to improve metabolic and reproductive disorders. However, it acts a stressor on the animal. In mammals, grape seed extracts (GSE) reduces oxidative stress. However, their effect on endocrine and tissue response need to be deepened in reproductive hens. Here, we evaluated the effects of time and level of GSE dietary supplementation on growth performance, viability, oxidative stress and metabolic parameters in plasma and metabolic tissues in reproductive hens and their offsprings. We designed an in vivo trial using 4 groups of feed restricted hens: A (control), B and C (supplemented with 0.5% and 1% of the total diet composition in GSE since week 4, respectively) and D (supplemented with 1% of GSE since the hatch). In hens from hatch to week 40, GSE supplementation did not affect food intake and fattening whatever the time and dose of supplementation. Body weight was significantly reduced in D group as compared to control. In all hen groups, GSE supplementation decreased plasma oxidative stress index associated to a decrease in the mRNA expression of the NOX4 and 5 oxidant genes in liver and muscle and an increase in SOD mRNA expression. This was also associated to decreased plasma chemerin and increased plasma adiponectin and visfatin levels. Interestingly, maternal GSE supplementation increased the live body weight and viability of chicks at hatching and 10 days of age. This was associated to a decrease in plasma and liver oxidative stress parameters. Taken together, GSE maternal dietary supplementation reduces plasma and tissue oxidative stress associated to modulation of adipokines without affecting fattening in reproductive hens. A 1% GSE maternal dietary supplementation increased offspring viability and reduced oxidative stress suggesting a beneficial transgenerational effect and a potential use to improve the quality of the progeny in reproductive hens.
Asunto(s)
Crianza de Animales Domésticos/métodos , Antioxidantes/administración & dosificación , Pollos/crecimiento & desarrollo , Suplementos Dietéticos , Extracto de Semillas de Uva/administración & dosificación , Adiponectina/sangre , Adiponectina/metabolismo , Animales , Peso Corporal/efectos de los fármacos , Cruzamiento/métodos , Quimiocinas/sangre , Quimiocinas/metabolismo , Pollos/sangre , Dieta/efectos adversos , Dieta/veterinaria , Femenino , Intercambio Materno-Fetal/fisiología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Embarazo , Reproducción/fisiologíaRESUMEN
The alpha-1 isoform of chicken AMPK situates on the Z-chromosome, in contrast, the other isoforms in birds and the mammalian AMPKα1 are located on the autosomes. The present study aimed to investigate the role of hepatic AMPK signaling in adaptation to nutritional status and the potential sex-specific response in chickens. Hepatic genes and proteins were compared between the two sexes immediately after hatching. From 20d of age, chicks from each sex received feed treatments: Control was fed ad libitum; Fasted was starved for 24â¯h; Refed was fed for 4â¯h after a 24â¯h fasting. As a result, hepatic AMPKα1 mRNA level in males was significantly higher at both ages compared to females, due to the presence of Z-chromosomes. However, this did not make this kinase "male-bias" as it was eventually compensated at a translational level, which was not reported in previous studies. The protein levels and activation of AMPKα were even lower in newly-hatched male compared to female chicks, accompanied with a higher FAS and SREBP-1 gene expressions. Accordingly, hepatic G6PC2 mRNA levels in males were significantly lower associated with lower plasma glucose levels after hatching. Fasting activated hepatic AMPK, which in turn inhibited gene expression of GS, FAS and SREBP-1, and stimulated the downstream G6PC2 in both sexes. These changes recovered after refeeding. In conclusion, AMPK plays a role in adaptation to nutritional environment for both sexes. The Z-linked AMPK did not exert a sex-specific signaling, due to a "translational compensation" of AMPKα1.
Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Pollos/fisiología , Ayuno , Conducta Alimentaria/fisiología , Hígado/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Animales , Femenino , Masculino , Fenómenos Fisiológicos de la Nutrición , Factores Sexuales , Transducción de SeñalRESUMEN
Glucose transport into cells is the first limiting step for the regulation of glucose homeostasis. In mammals, it is mediated by a family of facilitative glucose transporters (GLUTs) (encoded by SLC2A* genes), with a constitutive role (GLUT1), or insulin-sensitive transporters (GLUT4, GLUT8, and GLUT12). Compared to mammals, the chicken shows high levels of glycemia and relative insensitivity to exogenous insulin. To date, only GLUT1, GLUT8, and GLUT12 have been described in chicken skeletal muscles but not fully characterized, whereas GLUT4 was reported as lacking. The aim of the present study was to determine the changes in the expression of the SLC2A1, SLC2A8, and SLC2A12 genes, encoding GLUT1, GLUT8, and GLUT12 proteins respectively, during ontogenesis and how the respective expression of these three genes is affected by the muscle type and the nutritional or insulin status of the bird (fed, fasted, or insulin immunoneutralized). SLC2A1 was mostly expressed in the glycolytic pectoralis major (PM) muscle during embryogenesis and 5 d posthatching while SLC2A8 was mainly expressed at hatching. SLC2A12 expression increased regularly from 12 d in ovo up to 5 d posthatching. In the mixed-type sartorius muscle, the expression of SLC2A1 and SLC2A8 remained unchanged, whereas that of SLC2A12 was gradually increased during early muscle development. The expression of SLC2A1 and SLC2A8 was greater in oxidative and oxidoglycolytic muscles than in glycolytic muscles. The expression of SLC2A12 differed considerably between muscles but not necessarily in relation to muscle contractile or metabolic type. The expression of SLC2A1, SLC2A8, and SLC2A12 was reduced by fasting and insulin immunoneutralization in the PM muscle, while in the leg muscles only SLC2A12 was impaired by insulin immunoneutralization. Our findings clearly indicate differential regulation of the expression of three major GLUTs in skeletal muscles, with some type-related features. They provide new insights to improve the understanding of the fine regulation of glucose utilization in chicken muscles.
Asunto(s)
Pollos/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Resistencia a la Insulina , Insulina/metabolismo , Animales , Transporte Biológico , Glucemia/análisis , Glucosa/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Masculino , Músculo Esquelético/metabolismoRESUMEN
The processing ability and sensory quality of chicken breast meat are highly related to its ultimate pH (pHu), which is mainly determined by the amount of glycogen in the muscle at death. To unravel the molecular mechanisms underlying glycogen and meat pHu variations and to identify predictive biomarkers of these traits, a transcriptome profiling analysis was performed using an Agilent custom chicken 8 × 60 K microarray. The breast muscle gene expression patterns were studied in two chicken lines experimentally selected for high (pHu+) and low (pHu-) pHu values of the breast meat. Across the 1,436 differentially expressed (DE) genes found between the two lines, many were involved in biological processes related to muscle development and remodelling and carbohydrate and energy metabolism. The functional analysis showed an intensive use of carbohydrate metabolism to produce energy in the pHu- line, while alternative catabolic pathways were solicited in the muscle of the pHu+ broilers, compromising their muscle development and integrity. After a validation step on a population of 278 broilers using microfluidic RT-qPCR, 20 genes were identified by partial least squares regression as good predictors of the pHu, opening new perspectives of screening broilers likely to present meat quality defects.
Asunto(s)
Pollos/genética , Músculos Pectorales/fisiología , Productos Avícolas , Animales , Biomarcadores , Pollos/metabolismo , Expresión Génica , Perfilación de la Expresión Génica/estadística & datos numéricos , Marcadores Genéticos , Concentración de Iones de Hidrógeno , Dispositivos Laboratorio en un Chip , Análisis de los Mínimos Cuadrados , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/instrumentación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodosRESUMEN
Methionine (Met) is an essential sulfur amino acid (AA) limiting growth and is the precursor of cysteine (Cys), the rate-limiting factor in the synthesis of glutathione, and the main intracellular non-enzymatic antioxidant. This study aimed at determining the effects of limited supplies in Met and(or) Cys in early aspects of adipose tissue development and oxidative stress in differentiated adipocytes. Incremental reductions in Met (70, 40, and 0 µM) were compared with Met 100 µM (control dose) in porcine preadipocytes cultured in media without or with Cys (250 µM). In Cys-deprived media, both the absence (0 µM) and the lowest dose of Met (40 µM) reduced preadipocyte proliferation. Adding Cys in media only partly compensated for this decrease. On the opposite, mild Met deficiency (70 µM) did not alter preadipocyte proliferation in media without or with Cys. Strong Met deficiency (40 µM) also reduced differentiation and lipid accumulation into preadipose cells. Mild Met deficiency also reduced preadipocyte differentiation when Cys was present in the culture media, whereas in Cys-deprived media, percent of differentiated cell was similar and intracellular lipid content was slightly higher at Met 70 µM than at Met 100 µM. Finally, incremental reductions in Met in media with or without Cys lowered reactive oxygen species (ROS) production by differentiated cells. These results demonstrate the strong dependency of porcine adipogenesis to sulfur AA supplies. Strong Met deficiency decreases both proliferation and differentiation, whereas mild deficiency only alters differentiation.
Asunto(s)
Adipogénesis/fisiología , Tejido Adiposo/citología , Cisteína/deficiencia , Metionina/deficiencia , Adipogénesis/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Cisteína/metabolismo , Cisteína/farmacología , Femenino , Regulación de la Expresión Génica , Metionina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , PorcinosRESUMEN
BACKGROUND: Meat type chickens have limited capacities to cope with high environmental temperatures, this sometimes leading to mortality on farms and subsequent economic losses. A strategy to alleviate this problem is to enhance adaptive capacities to face heat exposure using thermal manipulation (TM) during embryogenesis. This strategy was shown to improve thermotolerance during their life span. The aim of this study was to determine the effects of TM (39.5 °C, 12 h/24 vs 37.8 °C from d7 to d16 of embryogenesis) and of a subsequent heat challenge (32 °C for 5 h) applied on d34 on gene expression in the Pectoralis major muscle (PM). A chicken gene expression microarray (8 × 60 K) was used to compare muscle gene expression profiles of Control (C characterized by relatively high body temperatures, Tb) and TM chickens (characterized by a relatively low Tb) reared at 21 °C and at 32 °C (CHC and TMHC, respectively) in a dye-swap design with four comparisons and 8 broilers per treatment. Real-time quantitative PCR (RT-qPCR) was subsequently performed to validate differential expression in each comparison. Gene ontology, clustering and network building strategies were then used to identify pathways affected by TM and heat challenge. RESULTS: Among the genes differentially expressed (DE) in the PM (1.5 % of total probes), 28 were found to be differentially expressed between C and TM, 128 between CHC and C, and 759 between TMHC and TM. No DE gene was found between TMHC and CHC broilers. The majority of DE genes analyzed by RT-qPCR were validated. In the TM/C comparison, DE genes were involved in energy metabolism and mitochondrial function, cell proliferation, vascularization and muscle growth; when comparing heat-exposed chickens to their own controls, TM broilers developed more specific pathways than C, especially involving genes related to metabolism, stress response, vascularization, anti-apoptotic and epigenetic processes. CONCLUSIONS: This study improved the understanding of the long-term effects of TM on PM muscle. TM broilers displaying low Tb may have lower metabolic intensity in the muscle, resulting in decreased metabolic heat production, whereas modifications in vascularization may enhance heat loss. These specific changes could in part explain the better adaptation of TM broilers to heat.
Asunto(s)
Pollos/crecimiento & desarrollo , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Músculos Pectorales/embriología , Animales , Embrión de Pollo , Pollos/genética , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Calor , Desarrollo de Músculos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodosRESUMEN
In mammals, insulin-sensitive GLUTs, including GLUT4, are recruited to the plasma membrane of adipose and muscle tissues in response to insulin. The GLUT4 gene is absent from the chicken genome, and no functional insulin-sensitive GLUTs have been characterized in chicken tissues to date. A nucleotide sequence is predicted to encode a chicken GLUT12 ortholog and, interestingly, GLUT12 has been described to act as an insulin-sensitive GLUT in mammals. It encodes a 596 amino acid protein exhibiting 71% identity with human GLUT12. First, we present the results of a phylogenetic study showing the stability of this gene during evolution of vertebrates. Second, tissue distribution of chicken SLC2A12 mRNA was characterized by RT-PCR. It was predominantly expressed in skeletal muscle and heart. Protein distribution was analysed by Western blotting using an anti-human GLUT12 antibody directed against a highly conserved region (87% of identity). An immuno-reactive band of the expected size (75kDa) was detected in the same tissues. Third a physiological characterization was performed: SLC2A12 mRNA levels were significantly lowered in fed chickens subjected to insulin immuno-neutralization. Finally, recruitment of immuno-reactive GLUT12 to the muscle plasma membrane was increased following 1h of intraperitoneal insulin administration (compared to a control fasted state). Thus insulin administration elicited membrane GLUT12 recruitment. In conclusion, these results suggest that the facilitative glucose transporter protein GLUT12 could act in chicken muscle as an insulin-sensitive transporter that is qualitatively similar to GLUT4 in mammals.
Asunto(s)
Pollos/genética , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Animales , Pollos/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Corazón/fisiología , Insulina/metabolismo , Masculino , Músculo Esquelético/metabolismo , Filogenia , ARN Mensajero/genética , Distribución Tisular/genéticaRESUMEN
Avian gametes present specific features related to their internal long-term mode of fertilization. Among other central actors of energetic metabolism control, it has been suspected that 5'-AMP-activated protein kinase (AMPK) influences sperm functions and thus plays a key role in fertilization success. In the present work, we studied AMPK localization and function in chicken sperm incubated in vitro. Effects of the pharmacological AMPK activators (AICAR, metformin) and the AMPK inhibitor compound C were assessed by evaluating AMPKalpha (Thr(172)) phosphorylation (by Western blotting), semen quality (by viability, motility, and ability to perform acrosome reaction), and energetic metabolism indicators (lactate, ATP). Localization of AMPK in subcellular sperm compartments was evaluated by immunocytochemistry. Total AMPK was found in all compartments except for the nucleus, but the phosphorylated form phospho-Thr(172)-AMPK was essentially localized in the flagellum and acrosome. AMPK activators significantly improved AMPK phosphorylation, sperm motility (increased by 40% motile, 90% progressive, and 60% rapid sperm), acrosome reaction and lactate production (increased by 40%) and viability. The AMPK inhibitor significantly reduced AMPK phosphorylation and percentages of motility (decrease by 25%), progressive energy (decrease by 35%), and rapid sperm (decreased by 30%), acrosome reaction, lactate production, and ATP release. The two activators differed in their effect on ATP concentration: AICAR stimulated ATP formation, whereas metformin did not. Our results indicate that AMPK plays a key role in the regulation of chicken sperm functions and metabolism. This action differs from that suggested in mammals, mainly by its crucial involvement in the acrosome reaction process.
Asunto(s)
Proteínas Quinasas Activadas por AMP/fisiología , Pollos , Espermatozoides/fisiología , Reacción Acrosómica/efectos de los fármacos , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Masculino , Metformina/farmacología , Fosforilación/efectos de los fármacos , Pirazoles/farmacología , Pirimidinas/farmacología , Ribonucleótidos/farmacología , Análisis de Semen/veterinaria , Espermatozoides/efectos de los fármacos , Espermatozoides/enzimologíaRESUMEN
Fast-growing chickens have a limited ability to tolerate high temperatures. Thermal manipulation during embryogenesis (TM) has previously been shown to lower chicken body temperature (Tb) at hatching and to improve thermotolerance until market age, possibly resulting from changes in metabolic regulation. The aim of this study was to evaluate the long-term effects of TM (12 h/d, 39.5°C, 65% RH from d 7 to 16 of embryogenesis vs. 37.8°C, 56% RH continuously) and of a subsequent heat challenge (32°C for 5 h at 34 d) on the mRNA expression of metabolic genes and cell signaling in the Pectoralis major muscle and the liver. Gene expression was analyzed by RT-qPCR in 8 chickens per treatment, characterized by low Tb in the TM groups and high Tb in the control groups. Data were analyzed using the general linear model of SAS considering TM and heat challenge within TM as main effects. TM had significant long-term effects on thyroid hormone metabolism by decreasing the muscle mRNA expression of deiodinase DIO3. Under standard rearing conditions, the expression of several genes involved in the regulation of energy metabolism, such as transcription factor PGC-1α, was affected by TM in the muscle, whereas for other genes regulating mitochondrial function and muscle growth, TM seemed to mitigate the decrease induced by the heat challenge. TM increased DIO2 mRNA expression in the liver (only at 21°C) and reduced the citrate synthase activity involved in the Krebs cycle. The phosphorylation level of p38 Mitogen-activated-protein kinase regulating the cell stress response was higher in the muscle of TM groups compared to controls. In conclusion, markers of energy utilization and growth were either changed by TM in the Pectoralis major muscle and the liver by thermal manipulation during incubation as a possible long-term adaptation limiting energy metabolism, or mitigated during heat challenge.
Asunto(s)
Temperatura Corporal , Pollos/crecimiento & desarrollo , Desarrollo Embrionario , Hígado/metabolismo , Músculos/metabolismo , Animales , Embrión de Pollo , Pollos/genética , Desarrollo Embrionario/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Insulina/metabolismo , Hígado/enzimología , Músculos/enzimología , Fosforilación , Proteínas Quinasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Estrés Fisiológico , Factores de TiempoRESUMEN
The poultry meat industry is faced with various quality issues related to variations in the ultimate pH of breast meat. The aim of this study was to evaluate the possibility to control breast ultimate pH by distributing finishing diets varying in amino acid (AA) and energy content for a short period before slaughter. Experimental diets were distributed to PM3 broilers on the last 3 d before slaughter (36 d of age). They consisted of a control (C) diet (3,150 kcal/kg; 200 g/kg of CP; 10.0 g/kg of true digestible Lys) with adequate amounts of AA other than Lys, 6 diets isocaloric to the control diet including 3 Lys-deficient (8.0 g/kg) diets with an adequate (Lys-/AA), low (Lys-/AA-), or high (Lys-/AA+) amount of other essential AA calculated in relation to Lys, and 3 Lys-rich (12.0 g/kg) diets with an adequate (Lys+/AA), low (Lys+/AA-), or high (Lys+/AA+) amount of other essential AA calculated in relation to Lys, and 2 diets isoproteic to C with a high (3,300 kcal/kg, E+) or low (3,000 kcal/kg, E-) energy content. Broiler feed consumption and growth performance were slightly affected by AA and energy content during the finishing period. Feed intake (33-36 d) was lower with the Lys+/AA+ and E+, and FCR between 24 and 36 d was higher with the Lys-/AA- and E- than with the C diet. Body weight at d 36 was lower in Lys-/AA-, Lys+/AA+, and E+ than in C, whereas the breast meat yield and abdominal fatness were not affected by diet. Lower pH values were observed in broilers fed Lys-deficient diets containing a high amount of other AA (Lys-/AA+) than in broilers fed diets containing low (AA-) or adequate (AA) amounts of other AA. This study shows that it is possible to alter the pH of breast meat by changing AA profile over a short period before slaughter, with limited impact on broiler growth and carcass composition.
Asunto(s)
Aminoácidos Esenciales/metabolismo , Pollos/fisiología , Proteínas en la Dieta/metabolismo , Ingestión de Energía , Carne/análisis , Carne/normas , Músculos Pectorales/fisiología , Aminoácidos Esenciales/administración & dosificación , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Composición Corporal , Pollos/crecimiento & desarrollo , Color , Proteínas en la Dieta/administración & dosificación , Digestión , Concentración de Iones de Hidrógeno , Masculino , Distribución Aleatoria , Factores de TiempoRESUMEN
n-3 PUFA are crucial for health and development. Their effects as regulators of lipid and glucose metabolism are well documented. They also appear to affect protein metabolism, especially by acting on insulin sensitivity. The aim of the present study was to investigate the role of n-3 PUFA, i.e. the precursor α-linolenic acid (ALA) 18:3n-3 or long-chain PUFA (LC-PUFA), in chickens, by focusing on their potential function as co-regulators of the insulin anabolic signalling cascade. Ross male broilers were divided into six dietary treatment groups. Diets were isoproteic (22 % crude protein) and isoenergetic (12·54 MJ metabolisable energy/kg) and contained similar lipid levels (6 %) provided by different proportions of various lipid sources: oleic sunflower oil rich in 18:1n-9 as control; fish oil rich in LC-PUFA; rapeseed and linseed oils providing ALA. The provision of diets enriched with n-3 PUFA, i.e. rich in LC-PUFA or in the precursor ALA, for 3 weeks improved the growth performance of chickens, whereas that of only the ALA diet enhanced the development of the pectoralis major muscle. At 23 d of age, we studied the insulin sensitivity of the pectoralis major muscle and liver of chickens after an intravenous injection of insulin or saline. The present results indicate that the activation patterns of n-3 PUFA are different in the liver and muscles. An ALA-enriched diet may improve insulin sensitivity in muscles, with greater activation of the insulin-induced 70 kDa ribosomal protein S6 kinase/ribosomal protein S6 pathway involved in the translation of mRNA into proteins, thereby potentially increasing muscle protein synthesis and growth. Our findings provide a basis on which to optimise dietary fatty acid provision in growing animals.
Asunto(s)
Proteínas Aviares/metabolismo , Pollos/metabolismo , Dieta/veterinaria , Ácidos Grasos Omega-3/metabolismo , Insulina/metabolismo , Receptor de Insulina/metabolismo , Transducción de Señal , Animales , Animales Endogámicos , Proteínas Aviares/biosíntesis , Proteínas Aviares/genética , Pollos/crecimiento & desarrollo , Ingestión de Energía , Ácidos Grasos Monoinsaturados , Aceites de Pescado/metabolismo , Francia , Resistencia a la Insulina , Aceite de Linaza/metabolismo , Hígado/crecimiento & desarrollo , Hígado/metabolismo , Masculino , Desarrollo de Músculos , Especificidad de Órganos , Músculos Pectorales/crecimiento & desarrollo , Músculos Pectorales/metabolismo , Aceites de Plantas/metabolismo , Aceite de Brassica napus , Aceite de Girasol , Aumento de PesoRESUMEN
Albumen was removed from broiler eggs before the start of incubation to induce prenatal protein under-nutrition in chicken embryos. With this method, the direct effect of protein deficiency was investigated, differing from mammalian models manipulating the maternal diet where indirect, hormonal effects can interfere. Based on the estimated albumen/egg weight ratio, 10 % of albumen was removed with an 18G needle, after making a hole at the sharp end of the egg with another 18G needle. Eggs were taped thereafter. The sham group underwent the same procedure, except that no albumen was removed. Control eggs did not receive any treatment. The removal of albumen decreased both embryonic and post-hatch body weight up to day 7 compared with the control group. On embryonic day 18, embryos from the albumen-deprived group had higher plasma uric acid levels compared with the sham (P= 0·016) and control (P= 0·009) groups. Moreover, a lower plasma amino acid concentration was observed at hatch compared with the sham (P= 0·038) and control (P= 0·152) groups. These findings indicate an altered protein metabolism. At hatch, a higher mRNA expression of muscle ring finger-1 (MuRF1), a gene related to proteolysis, was observed in albumen-deprived chicks compared with the control and sham chicks, together with an up-regulated expression of atrogin-1 (another atrogene) at this time point in the male protein-deficient chicks. These findings suggest that muscle proteolysis is transiently increased by the removal of albumen before the start of incubation. No evidence was found for altered protein synthesis capacity and translational efficiency in albumen-deprived chicks.
Asunto(s)
Albúminas/deficiencia , Peso Corporal , Desnutrición/metabolismo , Proteínas Musculares/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Biosíntesis de Proteínas , Proteolisis , Aminoácidos/sangre , Animales , Animales Recién Nacidos/embriología , Animales Recién Nacidos/genética , Animales Recién Nacidos/metabolismo , Peso Corporal/genética , Embrión de Pollo , Pollos , Huevos , Expresión Génica , Masculino , Desnutrición/genética , Proteínas Musculares/genética , Iniciación de la Cadena Peptídica Traduccional/genética , Biosíntesis de Proteínas/genética , ARN Mensajero/metabolismo , Regulación hacia Arriba , Ácido Úrico/sangreRESUMEN
BACKGROUND: Domestic broiler chickens rapidly accumulate adipose tissue due to intensive genetic selection for rapid growth and are naturally hyperglycemic and insulin resistant, making them an attractive addition to the suite of rodent models used for studies of obesity and type 2 diabetes in humans. Furthermore, chicken adipose tissue is considered as poorly sensitive to insulin and lipolysis is under glucagon control. Excessive fat accumulation is also an economic and environmental concern for the broiler industry due to the loss of feed efficiency and excessive nitrogen wasting, as well as a negative trait for consumers who are increasingly conscious of dietary fat intake. Understanding the control of avian adipose tissue metabolism would both enhance the utility of chicken as a model organism for human obesity and insulin resistance and highlight new approaches to reduce fat deposition in commercial chickens. RESULTS: We combined transcriptomics and metabolomics to characterize the response of chicken adipose tissue to two energy manipulations, fasting and insulin deprivation in the fed state. Sixteen to 17 day-old commercial broiler chickens (ISA915) were fed ad libitum, fasted for five hours, or fed but deprived of insulin by injections of anti-insulin serum. Pair-wise contrasts of expression data identified a total of 2016 genes that were differentially expressed after correction for multiple testing, with the vast majority of differences due to fasting (1780 genes). Gene Ontology and KEGG pathway analyses indicated that a short term fast impacted expression of genes in a broad selection of pathways related to metabolism, signaling and adipogenesis. The effects of insulin neutralization largely overlapped with the response to fasting, but with more modest effects on adipose tissue metabolism. Tissue metabolomics indicated unique effects of insulin on amino acid metabolism. CONCLUSIONS: Collectively, these data provide a foundation for further study into the molecular basis for adipose expansion in commercial poultry and identify potential pathways through which fat accretion may be attenuated in the future through genetic selection or management practices. They also highlight chicken as a useful model organism in which to study the dynamic relationship between food intake, metabolism, and adipose tissue biology.