RESUMEN
Here, we report the design, construction, and characterization of a tRNA neochromosome, a designer chromosome that functions as an additional, de novo counterpart to the native complement of Saccharomyces cerevisiae. Intending to address one of the central design principles of the Sc2.0 project, the â¼190-kb tRNA neochromosome houses all 275 relocated nuclear tRNA genes. To maximize stability, the design incorporates orthogonal genetic elements from non-S. cerevisiae yeast species. Furthermore, the presence of 283 rox recombination sites enables an orthogonal tRNA SCRaMbLE system. Following construction in yeast, we obtained evidence of a potent selective force, manifesting as a spontaneous doubling in cell ploidy. Furthermore, tRNA sequencing, transcriptomics, proteomics, nucleosome mapping, replication profiling, FISH, and Hi-C were undertaken to investigate questions of tRNA neochromosome behavior and function. Its construction demonstrates the remarkable tractability of the yeast model and opens up opportunities to directly test hypotheses surrounding these essential non-coding RNAs.
Asunto(s)
Cromosomas Artificiales de Levadura , Genoma Fúngico , Saccharomyces cerevisiae , Perfilación de la Expresión Génica , Proteómica , Saccharomyces cerevisiae/genética , Biología Sintética , ARN de Transferencia/genética , Cromosomas Artificiales de Levadura/genéticaRESUMEN
We analyzed the genomes of 170 C. parapsilosis isolates and identified multiple copy number variations (CNVs). We identified two genes, RTA3 (CPAR2_104610) and ARR3 (CPAR2_601050), each of which was the target of multiple independent amplification events. Phylogenetic analysis shows that most of these amplifications originated only once. For ARR3, which encodes a putative arsenate transporter, 8 distinct CNVs were identified, ranging in size from 2.3 kb to 10.5 kb with 3 to 23 copies. For RTA3, 16 distinct CNVs were identified, ranging in size from 0.3 kb to 4.5 kb with 2 to ~50 copies. One unusual amplification resulted in a DUP-TRP/INV-DUP structure similar to some human CNVs. RTA3 encodes a putative phosphatidylcholine (PC) floppase which is known to regulate the inward translocation of PC in Candida albicans. We found that an increased copy number of RTA3 correlated with resistance to miltefosine, an alkylphosphocholine drug that affects PC metabolism. Additionally, we conducted an adaptive laboratory evolution experiment in which two C. parapsilosis isolates were cultured in increasing concentrations of miltefosine. Two genes, CPAR2_303950 and CPAR2_102700, coding for putative PC flippases homologous to S. cerevisiae DNF1 gained homozygous protein-disrupting mutations in the evolved strains. Overall, our results show that C. parapsilosis can gain resistance to miltefosine, a drug that has recently been granted orphan drug designation approval by the United States Food and Drug Administration for the treatment of invasive candidiasis, through both CNVs or loss-of-function alleles in one of the flippase genes. IMPORTANCE Copy number variations (CNVs) are an important source of genomic diversity that have been associated with drug resistance. We identify two unusual CNVs in the human fungal pathogen Candida parapsilosis. Both target a single gene (RTA3 or ARR3), and they have occurred multiple times in multiple isolates. The copy number of RTA3, a putative floppase that controls the inward translocation of lipids in the cell membrane, correlates with resistance to miltefosine, a derivative of phosphatidylcholine (PC) that was originally developed as an anticancer drug. In 2021, miltefosine was designated an orphan drug by the United States Food and Drug Administration for the treatment of invasive candidiasis. Importantly, we find that resistance to miltefosine is also caused by mutations in flippases, which control the outward movement of lipids, and that many C. parapsilosis isolates are prone to easily acquiring an increased resistance to miltefosine.
Asunto(s)
Candida parapsilosis , Farmacorresistencia Fúngica , Antifúngicos/farmacología , Arseniatos , Candida parapsilosis/efectos de los fármacos , Candida parapsilosis/genética , Variaciones en el Número de Copia de ADN , Farmacorresistencia Fúngica/genética , Amplificación de Genes , Fosfatidilcolinas , Filogenia , Saccharomyces cerevisiaeRESUMEN
Saccharomyces cerevisiae exhibits gene expression homeostasis, which is defined as the buffering of transcription levels against changes in DNA copy number during the S phase of the cell cycle. It has been suggested that S. cerevisiae employs an active mechanism to maintain gene expression homeostasis through Rtt109-Asf1-dependent acetylation of histone H3 on lysine 56 (H3K56). Here, we show that gene expression homeostasis can be achieved independently of H3K56 acetylation by Tos4 (Target of Swi6-4). Using Nanostring technology, we establish that Tos4-dependent gene expression homeostasis depends on its forkhead-associated (FHA) domain, which is a phosphopeptide recognition domain required to bind histone deacetylases (HDACs). We demonstrate that the mechanism of Tos4-dependent gene expression homeostasis requires its interaction with the Rpd3L HDAC complex. However, this is independent of Rpd3's well-established roles in both histone deacetylation and controlling the DNA replication timing program, as established by deep sequencing of Fluorescence-Activated Cell Sorted (FACS) S and G2 phase populations. Overall, our data reveals that Tos4 mediates gene expression homeostasis through its FHA domain-dependent interaction with the Rpd3L complex, which is independent of H3K56ac.
Asunto(s)
Regulación Fúngica de la Expresión Génica , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Homeostasis , Lisina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilación , Histona Acetiltransferasas/genética , Histonas/genética , Lisina/genética , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genéticaRESUMEN
A eukaryotic chromosome relies on the function of multiple spatially distributed DNA replication origins for its stable inheritance. The spatial location of an origin is determined by the chromosomal position of an MCM complex, the inactive form of the DNA replicative helicase that is assembled onto DNA in G1-phase (also known as origin licensing). While the biochemistry of origin licensing is understood, the mechanisms that promote an adequate spatial distribution of MCM complexes across chromosomes are not. We have elucidated a role for the Sir2 histone deacetylase in establishing the normal distribution of MCM complexes across Saccharomyces cerevisiae chromosomes. In the absence of Sir2, MCM complexes accumulated within both early-replicating euchromatin and telomeric heterochromatin, and replication activity within these regions was enhanced. Concomitantly, the duplication of several regions of late-replicating euchromatin were delayed. Thus, Sir2-mediated attenuation of origin licensing within both euchromatin and telomeric heterochromatin established the normal spatial distribution of origins across yeast chromosomes important for normal genome duplication.
Asunto(s)
Eucromatina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona , Cromosomas , ADN Helicasas , Replicación del ADN , Heterocromatina , Origen de Réplica/genéticaRESUMEN
Genome replication follows a defined temporal programme that can change during cellular differentiation and disease onset. DNA replication results in an increase in DNA copy number that can be measured by high-throughput sequencing. Here we present a protocol to determine genome replication dynamics using DNA copy-number measurements. Cell populations can be obtained in three variants of the method. First, sort-seq reveals the average replication dynamics across S phase in an unperturbed cell population; FACS is used to isolate replicating and non-replicating subpopulations from asynchronous cells. Second, sync-seq measures absolute replication time at specific points during S phase using a synchronized cell population. Third, marker frequency analysis can be used to reveal the average replication dynamics using copy-number analysis in any proliferating asynchronous cell culture. These approaches have been used to reveal genome replication dynamics in prokaryotes, archaea and a wide range of eukaryotes, including yeasts and mammalian cells. We have found this approach straightforward to apply to other organisms and highlight example studies from across the three domains of life. Here we present a Saccharomyces cerevisiae version of the protocol that can be performed in 7-10 d. It requires basic molecular and cellular biology skills, as well as a basic understanding of Unix and R.
Asunto(s)
Variaciones en el Número de Copia de ADN , ADN de Hongos/genética , Genoma Fúngico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Replicación del ADN , Citometría de Flujo , Genómica/métodos , Saccharomyces cerevisiaeRESUMEN
Despite the conserved essential function of centromeres, centromeric DNA itself is not conserved. The histone-H3 variant, CENP-A, is the epigenetic mark that specifies centromere identity. Paradoxically, CENP-A normally assembles on particular sequences at specific genomic locations. To gain insight into the specification of complex centromeres, here we take an evolutionary approach, fully assembling genomes and centromeres of related fission yeasts. Centromere domain organization, but not sequence, is conserved between Schizosaccharomyces pombe, S. octosporus and S. cryophilus with a central CENP-ACnp1 domain flanked by heterochromatic outer-repeat regions. Conserved syntenic clusters of tRNA genes and 5S rRNA genes occur across the centromeres of S. octosporus and S. cryophilus, suggesting conserved function. Interestingly, nonhomologous centromere central-core sequences from S. octosporus and S. cryophilus are recognized in S. pombe, resulting in cross-species establishment of CENP-ACnp1 chromatin and functional kinetochores. Therefore, despite the lack of sequence conservation, Schizosaccharomyces centromere DNA possesses intrinsic conserved properties that promote assembly of CENP-A chromatin.
Asunto(s)
Centrómero/genética , Ensamble y Desensamble de Cromatina/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/genética , ADN/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Centrómero/metabolismo , Proteína A Centromérica/genética , Proteína A Centromérica/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Secuencia Conservada , Epigénesis Genética , Histonas , Cinetocoros , ARN Ribosómico 5S , ARN de Transferencia , Proteínas de Schizosaccharomyces pombe/metabolismo , SinteníaRESUMEN
Replication of eukaryotic genomes is highly stochastic, making it difficult to determine the replication dynamics of individual molecules with existing methods. We report a sequencing method for the measurement of replication fork movement on single molecules by detecting nucleotide analog signal currents on extremely long nanopore traces (D-NAscent). Using this method, we detect 5-bromodeoxyuridine (BrdU) incorporated by Saccharomyces cerevisiae to reveal, at a genomic scale and on single molecules, the DNA sequences replicated during a pulse-labeling period. Under conditions of limiting BrdU concentration, D-NAscent detects the differences in BrdU incorporation frequency across individual molecules to reveal the location of active replication origins, fork direction, termination sites, and fork pausing/stalling events. We used sequencing reads of 20-160 kilobases to generate a whole-genome single-molecule map of DNA replication dynamics and discover a class of low-frequency stochastic origins in budding yeast. The D-NAscent software is available at https://github.com/MBoemo/DNAscent.git .
Asunto(s)
Replicación del ADN , Genoma Fúngico , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Nanoporos , Saccharomyces cerevisiae/genética , Bromodesoxiuridina/metabolismo , ADN de Hongos/genética , Genoma , Programas InformáticosRESUMEN
Many microbes acquire metabolites in a "feeding" process where complex polymers are broken down in the environment to their subunits. The subsequent uptake of soluble metabolites by a cell, sometimes called osmotrophy, is facilitated by transporter proteins. As such, the diversification of osmotrophic microorganisms is closely tied to the diversification of transporter functions. Horizontal gene transfer (HGT) has been suggested to produce genetic variation that can lead to adaptation, allowing lineages to acquire traits and expand niche ranges. Transporter genes often encode single-gene phenotypes and tend to have low protein-protein interaction complexity and, as such, are potential candidates for HGT. Here we test the idea that HGT has underpinned the expansion of metabolic potential and substrate utilization via transfer of transporter-encoding genes. Using phylogenomics, we identify seven cases of transporter-gene HGT between fungal phyla, and investigate compatibility, localization, function, and fitness consequences when these genes are expressed in Saccharomyces cerevisiae Using this approach, we demonstrate that the transporters identified can alter how fungi utilize a range of metabolites, including peptides, polyols, and sugars. We then show, for one model gene, that transporter gene acquisition by HGT can significantly alter the fitness landscape of S. cerevisiae We therefore provide evidence that transporter HGT occurs between fungi, alters how fungi can acquire metabolites, and can drive gain in fitness. We propose a "transporter-gene acquisition ratchet," where transporter repertoires are continually augmented by duplication, HGT, and differential loss, collectively acting to overwrite, fine-tune, and diversify the complement of transporters present in a genome.
Asunto(s)
Transferencia de Gen Horizontal/genética , Aptitud Genética/genética , Saccharomyces cerevisiae/genética , Evolución Biológica , Evolución Molecular , Hongos/genética , Genoma , Proteínas de Transporte de Membrana/genética , Fenotipo , Filogenia , Proteínas de Saccharomyces cerevisiae/genéticaRESUMEN
Eukaryotic genomes are replicated in a reproducible temporal order; however, the physiological significance is poorly understood. We compared replication timing in divergent yeast species and identified genomic features with conserved replication times. Histone genes were among the earliest replicating loci in all species. We specifically delayed the replication of HTA1-HTB1 and discovered that this halved the expression of these histone genes. Finally, we showed that histone and cell cycle genes in general are exempt from Rtt109-dependent dosage compensation, suggesting the existence of pathways excluding specific loci from dosage compensation mechanisms. Thus, we have uncovered one of the first physiological requirements for regulated replication time and demonstrated a direct link between replication timing and gene expression.
Asunto(s)
Proteínas de Ciclo Celular/genética , Momento de Replicación del ADN , ADN de Hongos/biosíntesis , Regulación Fúngica de la Expresión Génica , Histonas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/biosíntesis , ADN de Hongos/genética , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histonas/biosíntesis , Mutación , Filogenia , ARN de Hongos/biosíntesis , ARN de Hongos/genética , Saccharomyces cerevisiae/clasificación , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Tiempo , Transcripción GenéticaRESUMEN
Here, we report the successful design, construction, and characterization of a 770-kilobase synthetic yeast chromosome II (synII). Our study incorporates characterization at multiple levels-including phenomics, transcriptomics, proteomics, chromosome segregation, and replication analysis-to provide a thorough and comprehensive analysis of a synthetic chromosome. Our Trans-Omics analyses reveal a modest but potentially relevant pervasive up-regulation of translational machinery observed in synII, mainly caused by the deletion of 13 transfer RNAs. By both complementation assays and SCRaMbLE (synthetic chromosome rearrangement and modification by loxP-mediated evolution), we targeted and debugged the origin of a growth defect at 37°C in glycerol medium, which is related to misregulation of the high-osmolarity glycerol response. Despite the subtle differences, the synII strain shows highly consistent biological processes comparable to the native strain.
Asunto(s)
Cromosomas Artificiales de Levadura/fisiología , Genoma Fúngico , Saccharomyces cerevisiae/genética , Segregación Cromosómica , Cromosomas Artificiales de Levadura/química , Cromosomas Artificiales de Levadura/genética , Medios de Cultivo/química , Replicación del ADN , Glicerol , Proteómica , Saccharomyces cerevisiae/crecimiento & desarrollo , Análisis de Secuencia de ADN , Biología Sintética , TranscriptomaRESUMEN
Centromeres are the chromosomal regions promoting kinetochore assembly for chromosome segregation. In many eukaryotes, the centromere consists of up to mega base pairs of DNA. On such "regional centromeres," kinetochore assembly is mainly defined by epigenetic regulation [1]. By contrast, a clade of budding yeasts (Saccharomycetaceae) has a "point centromere" of 120-200 base pairs of DNA, on which kinetochore assembly is defined by the consensus DNA sequence [2, 3]. During evolution, budding yeasts acquired point centromeres, which replaced ancestral, regional centromeres [4]. All known point centromeres among different yeast species share common consensus DNA elements (CDEs) [5, 6], implying that they evolved only once and stayed essentially unchanged throughout evolution. Here, we identify a yeast centromere that challenges this view: that of the budding yeast Naumovozyma castellii is the first unconventional point centromere with unique CDEs. The N. castellii centromere CDEs are essential for centromere function but have different DNA sequences from CDEs in other point centromeres. Gene order analyses around N. castellii centromeres indicate their unique, and separate, evolutionary origin. Nevertheless, they are still bound by the ortholog of the CBF3 complex, which recognizes CDEs in other point centromeres. The new type of point centromere originated prior to the divergence between N. castellii and its close relative Naumovozyma dairenensis and disseminated to all N. castellii chromosomes through extensive genome rearrangement. Thus, contrary to the conventional view, point centromeres can undergo rapid evolutionary changes. These findings give new insights into the evolution of point centromeres.
Asunto(s)
Centrómero/genética , ADN de Hongos/genética , Evolución Molecular , Saccharomycetales/genética , Centrómero/metabolismo , ADN de Hongos/metabolismo , Saccharomycetales/metabolismoRESUMEN
Three eukaryotic DNA polymerases are essential for genome replication. Polymerase (Pol) α-primase initiates each synthesis event and is rapidly replaced by processive DNA polymerases: PolÉ replicates the leading strand, whereas Polδ performs lagging-strand synthesis. However, it is not known whether this division of labor is maintained across the whole genome or how uniform it is within single replicons. Using Schizosaccharomyces pombe, we have developed a polymerase usage sequencing (Pu-seq) strategy to map polymerase usage genome wide. Pu-seq provides direct replication-origin location and efficiency data and indirect estimates of replication timing. We confirm that the division of labor is broadly maintained across an entire genome. However, our data suggest a subtle variability in the usage of the two polymerases within individual replicons. We propose that this results from occasional leading-strand initiation by Polδ followed by exchange for PolÉ.
Asunto(s)
ADN Polimerasa III/fisiología , ADN Polimerasa II/fisiología , ADN Polimerasa I/fisiología , Replicación del ADN/fisiología , Modelos Genéticos , Schizosaccharomyces/genética , ADN/química , Origen de RéplicaRESUMEN
Eukaryotic genomes are replicated from multiple DNA replication origins. We present complementary deep sequencing approaches to measure origin location and activity in Saccharomyces cerevisiae. Measuring the increase in DNA copy number during a synchronous S-phase allowed the precise determination of genome replication. To map origin locations, replication forks were stalled close to their initiation sites; therefore, copy number enrichment was limited to origins. Replication timing profiles were generated from asynchronous cultures using fluorescence-activated cell sorting. Applying this technique we show that the replication profiles of haploid and diploid cells are indistinguishable, indicating that both cell types use the same cohort of origins with the same activities. Finally, increasing sequencing depth allowed the direct measure of replication dynamics from an exponentially growing culture. This is the first time this approach, called marker frequency analysis, has been successfully applied to a eukaryote. These data provide a high-resolution resource and methodological framework for studying genome biology.
Asunto(s)
Replicación del ADN , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Origen de Réplica , Saccharomyces cerevisiae/genéticaRESUMEN
Eukaryotic genome replication is stochastic, and each cell uses a different cohort of replication origins. We demonstrate that interpreting high-resolution Saccharomyces cerevisiae genome replication data with a mathematical model allows quantification of the stochastic nature of genome replication, including the efficiency of each origin and the distribution of termination events. Single-cell measurements support the inferred values for stochastic origin activation time. A strain, in which three origins were inactivated, confirmed that the distribution of termination events is primarily dictated by the stochastic activation time of origins. Cell-to-cell variability in origin activity ensures that termination events are widely distributed across virtually the whole genome. We propose that the heterogeneity in origin usage contributes to genome stability by limiting potentially deleterious events from accumulating at particular loci.
Asunto(s)
Replicación del ADN/genética , Origen de Réplica/genética , Saccharomyces cerevisiae/genética , Secuencia de Bases , Genoma Fúngico/genética , Inestabilidad Genómica , Modelos Teóricos , Fase S/genética , Análisis de Secuencia de ADNRESUMEN
Eukaryotic DNA replication origins are selected in G1-phase when the origin recognition complex (ORC) binds chromosomal positions and triggers molecular events culminating in the initiation of DNA replication (a.k.a. origin firing) during S-phase. Each chromosome uses multiple origins for its duplication, and each origin fires at a characteristic time during S-phase, creating a cell-type specific genome replication pattern relevant to differentiation and genome stability. It is unclear whether ORC-origin interactions are relevant to origin activation time. We applied a novel genome-wide strategy to classify origins in the model eukaryote Saccharomyces cerevisiae based on the types of molecular interactions used for ORC-origin binding. Specifically, origins were classified as DNA-dependent when the strength of ORC-origin binding in vivo could be explained by the affinity of ORC for origin DNA in vitro, and, conversely, as 'chromatin-dependent' when the ORC-DNA interaction in vitro was insufficient to explain the strength of ORC-origin binding in vivo. These two origin classes differed in terms of nucleosome architecture and dependence on origin-flanking sequences in plasmid replication assays, consistent with local features of chromatin promoting ORC binding at 'chromatin-dependent' origins. Finally, the 'chromatin-dependent' class was enriched for origins that fire early in S-phase, while the DNA-dependent class was enriched for later firing origins. Conversely, the latest firing origins showed a positive association with the ORC-origin DNA paradigm for normal levels of ORC binding, whereas the earliest firing origins did not. These data reveal a novel association between ORC-origin binding mechanisms and the regulation of origin activation time.
Asunto(s)
Cromatina/genética , Replicación del ADN/genética , Complejo de Reconocimiento del Origen/genética , Saccharomyces cerevisiae/genética , Sitios de Unión , Cromosomas/genética , ADN/genética , Proteínas de Unión al ADN/genética , Fase G1/genética , Nucleosomas/genética , Unión Proteica , Origen de Réplica/genéticaRESUMEN
Centromeres play several important roles in ensuring proper chromosome segregation. Not only do they promote kinetochore assembly for microtubule attachment, but they also support robust sister chromatid cohesion at pericentromeres and facilitate replication of centromeric DNA early in S phase. However, it is still elusive how centromeres orchestrate all these functions at the same site. Here, we show that the budding yeast Dbf4-dependent kinase (DDK) accumulates at kinetochores in telophase, facilitated by the Ctf19 kinetochore complex. This promptly recruits Sld3-Sld7 replication initiator proteins to pericentromeric replication origins so that they initiate replication early in S phase. Furthermore, DDK at kinetochores independently recruits the Scc2-Scc4 cohesin loader to centromeres in G1 phase. This enhances cohesin loading and facilitates robust pericentromeric cohesion in S phase. Thus, we have found the central mechanism by which kinetochores orchestrate early S phase DNA replication and robust sister chromatid cohesion at microtubule attachment sites.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , Cinetocoros/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/genética , Centrómero/genética , Centrómero/metabolismo , Cromátides/genética , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Fase S/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genéticaRESUMEN
BACKGROUND: Comparative genomics is a formidable tool to identify functional elements throughout a genome. In the past ten years, studies in the budding yeast Saccharomyces cerevisiae and a set of closely related species have been instrumental in showing the benefit of analyzing patterns of sequence conservation. Increasing the number of closely related genome sequences makes the comparative genomics approach more powerful and accurate. RESULTS: Here, we report the genome sequence and analysis of Saccharomyces arboricolus, a yeast species recently isolated in China, that is closely related to S. cerevisiae. We obtained high quality de novo sequence and assemblies using a combination of next generation sequencing technologies, established the phylogenetic position of this species and considered its phenotypic profile under multiple environmental conditions in the light of its gene content and phylogeny. CONCLUSIONS: We suggest that the genome of S. arboricolus will be useful in future comparative genomics analysis of the Saccharomyces sensu stricto yeasts.
Asunto(s)
Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Saccharomyces/genética , Genes Fúngicos/genética , Internet , Anotación de Secuencia Molecular , Fenotipo , Filogenia , Especificidad de la EspecieRESUMEN
DNA replication initiates from defined locations called replication origins; some origins are highly active, whereas others are dormant and rarely used. Origins also differ in their activation time, resulting in particular genomic regions replicating at characteristic times and in a defined temporal order. Here we report the comparison of genome replication in four budding yeast species: Saccharomyces cerevisiae, S. paradoxus, S. arboricolus, and S. bayanus. First, we find that the locations of active origins are predominantly conserved between species, whereas dormant origins are poorly conserved. Second, we generated genome-wide replication profiles for each of these species and discovered that the temporal order of genome replication is highly conserved. Therefore, active origins are not only conserved in location, but also in activation time. Only a minority of these conserved origins show differences in activation time between these species. To gain insight as to the mechanisms by which origin activation time is regulated we generated replication profiles for a S. cerevisiae/S. bayanus hybrid strain and find that there are both local and global regulators of origin function.
Asunto(s)
Momento de Replicación del ADN , Replicación del ADN , Origen de Réplica , Saccharomyces cerevisiae/genética , Quimera/genética , Evolución Molecular , Regulación Fúngica de la Expresión Génica , Telómero/genéticaRESUMEN
OriDB (http://www.oridb.org/) is a database containing collated genome-wide mapping studies of confirmed and predicted replication origin sites. The original database collated and curated Saccharomyces cerevisiae origin mapping studies. Here, we report that the OriDB database and web site have been revamped to improve user accessibility to curated data sets, to greatly increase the number of curated origin mapping studies, and to include the collation of replication origin sites in the fission yeast Schizosaccharomyces pombe. The revised database structure underlies these improvements and will facilitate further expansion in the future. The updated OriDB for S. cerevisiae is available at http://cerevisiae.oridb.org/ and for S. pombe at http://pombe.oridb.org/.
Asunto(s)
Bases de Datos de Ácidos Nucleicos , Origen de Réplica , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , ADN de Hongos/biosíntesis , ADN de Hongos/química , Genoma FúngicoRESUMEN
The fission yeast clade--comprising Schizosaccharomyces pombe, S. octosporus, S. cryophilus, and S. japonicus--occupies the basal branch of Ascomycete fungi and is an important model of eukaryote biology. A comparative annotation of these genomes identified a near extinction of transposons and the associated innovation of transposon-free centromeres. Expression analysis established that meiotic genes are subject to antisense transcription during vegetative growth, which suggests a mechanism for their tight regulation. In addition, trans-acting regulators control new genes within the context of expanded functional modules for meiosis and stress response. Differences in gene content and regulation also explain why, unlike the budding yeast of Saccharomycotina, fission yeasts cannot use ethanol as a primary carbon source. These analyses elucidate the genome structure and gene regulation of fission yeast and provide tools for investigation across the Schizosaccharomyces clade.