Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Arch Virol ; 167(12): 2519-2528, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36083350

RESUMEN

The wide spread of coronavirus disease 2019 (COVID-19) has significantly threatened public health. Human herd immunity induced by vaccination is essential to fight the epidemic. Therefore, highly immunogenic and safe vaccines are necessary to control SARS-CoV-2, whose S protein is the antigenic determinant responsible for eliciting antibodies that prevent viral entry and fusion. In this study, we developed a SARS-CoV-2 DNA vaccine expressing the S protein, named pVAX-S-OP, which was optimized according to the human-origin codon preference and using polyinosinic-polycytidylic acid as an adjuvant. pVAX-S-OP induced specific antibodies and neutralizing antibodies in BALB/c and hACE2 transgenic mice. Furthermore, we observed 1.43-fold higher antibody titers in mice receiving pVAX-S-OP plus adjuvant than in those receiving pVAX-S-OP alone. Interferon gamma production in the pVAX-S-OP-immunized group was 1.58 times (CD3+CD4+IFN-gamma+) and 2.29 times (CD3+CD8+IFN-gamma+) lower than that in the pVAX-S-OP plus adjuvant group but higher than that in the control group. The pVAX-S-OP vaccine was also observed to stimulate a Th1-type immune response. When, hACE2 transgenic mice were challenged with SARS-CoV-2, qPCR detection of N and E genes showed that the viral RNA loads in pVAX-S-OP-immunized mice lung tissues were 104 times and 106 times lower than those of the PBS control group, which shows that the vaccine could reduce the amount of live virus in the lungs of hACE2 mice. In addition, pathological sections showed less lung damage in the pVAX-S-OP-immunized group. Taken together, our results demonstrated that pVAX-S-OP has significant immunogenicity, which provides support for developing SARS-CoV-2 DNA candidate vaccines.


Asunto(s)
COVID-19 , Vacunas de ADN , Animales , Humanos , Ratones , Adyuvantes Inmunológicos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Inmunidad Celular , Ratones Transgénicos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Vacunas de ADN/genética
2.
J Nanosci Nanotechnol ; 21(10): 5241-5246, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33875113

RESUMEN

In this work, we describe the principle and operation of a bubble-liquid membrane reactor, and use of the reactor to prepare spherical calcium carbonate nanoparticles. The products were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and laser particle size analysis. The effects of additives to control crystal morphology, coating agents, and the stirring speed of the bubble-liquid membrane reactor were investigated. Spherical calcium carbonate nanoparticles with uniform dispersion and no agglomeration were obtained when a disodium hydrogen phosphate/ethylenediaminetetraacetic acid disodium salt mixture (1:1 mass ratio) was used as the additive, oleic acid was used as the coating agent (1.5 wt%), and the stirring speed was 5000-6000 r/min. The results indicate that the bubble-liquid membrane reactor may be suitable for continuous industrial production of calcium carbonate nanoparticles.


Asunto(s)
Carbonato de Calcio , Nanopartículas , Microscopía Electrónica de Rastreo , Tamaño de la Partícula , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
3.
Parasitol Res ; 113(10): 3601-8, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25132566

RESUMEN

The DNA barcode has been widely used in species identification and phylogenetic analysis since 2003, but there have been no reports in Demodex. In this study, to obtain an appropriate DNA barcode for Demodex, molecular identification of Demodex caprae based on mitochondrial cox1 was conducted. Firstly, individual adults and eggs of D. caprae were obtained for genomic DNA (gDNA) extraction; Secondly, mitochondrial cox1 fragment was amplified, cloned, and sequenced; Thirdly, cox1 fragments of D. caprae were aligned with those of other Demodex retrieved from GenBank; Finally, the intra- and inter-specific divergences were computed and the phylogenetic trees were reconstructed to analyze phylogenetic relationship in Demodex. Results obtained from seven 429-bp fragments of D. caprae showed that sequence identities were above 99.1% among three adults and four eggs. The intraspecific divergences in D. caprae, Demodex folliculorum, Demodex brevis, and Demodex canis were 0.0-0.9, 0.5-0.9, 0.0-0.2, and 0.0-0.5%, respectively, while the interspecific divergences between D. caprae and D. folliculorum, D. canis, and D. brevis were 20.3-20.9, 21.8-23.0, and 25.0-25.3, respectively. The interspecific divergences were 10 times higher than intraspecific ones, indicating considerable barcoding gap. Furthermore, the phylogenetic trees showed that four Demodex species gathered separately, representing independent species; and Demodex folliculorum gathered with canine Demodex, D. caprae, and D. brevis in sequence. In conclusion, the selected 429-bp mitochondrial cox1 gene is an appropriate DNA barcode for molecular classification, identification, and phylogenetic analysis of Demodex. D. caprae is an independent species and D. folliculorum is closer to D. canis than to D. caprae or D. brevis.


Asunto(s)
Ciclooxigenasa 1/genética , Infestaciones por Ácaros/veterinaria , Ácaros/clasificación , Animales , Secuencia de Bases , China , Código de Barras del ADN Taxonómico , ADN Mitocondrial/química , ADN Mitocondrial/genética , Perros , Femenino , Infestaciones por Ácaros/parasitología , Ácaros/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , Óvulo , Filogenia , Alineación de Secuencia , Análisis de Secuencia de ADN
4.
Exp Parasitol ; 142: 38-42, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24726960

RESUMEN

Traditional classification of Demodex mites by hosts and phenotypic characteristics is defective because of environmental influences. In this study, we proposed molecular identification of four phenotypes of two human Demodex species based on mitochondrial cox1 fragments for the first time. Mites collected from sufferers' facial skin were classified into four phenotypes: phenotype A-C with finger-like terminus, and phenotype D with cone-like terminus. The results of molecular data showed that cox1 sequences were all 429 bp. Divergences, genetic distances and transition/transversion ratios among the three phenotypes with finger-like terminus were 0.0-3.0%, 0.000-0.031, and 6/3-5/0, respectively, in line with intraspecific differences. However, those measures between the phenotype with cone-like terminus and phenotypes with finger-like terminus were 19.6-20.5%, 0.256-0.271, and 0.58 (31/53)-0.66 (35/53), respectively, reaching interspecific level. Phylogenetic trees also showed that the three phenotypes with finger-like terminus clustered as one clade, and the phenotype with cone-like terminus formed another one. Therefore, we conclude that mitochondrial cox1 sequence is a good marker for identification of two human Demodex species. Molecular data indicate no subspecies differentiation. Terminus is an effective character for species identification. Mites with finger-like terminus are Demodex folliculorum, and those with cone-like terminus are Demodex brevis.


Asunto(s)
Ácaros/clasificación , Animales , China , Complejo IV de Transporte de Electrones/genética , Humanos , Ácaros/anatomía & histología , Ácaros/genética , Mitocondrias/enzimología , Fenotipo , Filogenia
5.
J Zhejiang Univ Sci B ; 14(9): 829-36, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24009203

RESUMEN

For a long time, classification of Demodex mites has been based mainly on their hosts and phenotypic characteristics. A new subspecies of Demodex folliculorum has been proposed, but not confirmed. Here, cox1 partial sequences of nine isolates of three Demodex species from two geographical sources (China and Spain) were studied to conduct molecular identification of D. folliculorum. Sequencing showed that the mitochondrial cox1 fragments of five D. folliculorum isolates from the facial skin of Chinese individuals were 429 bp long and that their sequence identity was 97.4%. The average sequence divergence was 1.24% among the five Chinese isolates, 0.94% between the two geographical isolate groups (China (5) and Spain (1)), and 2.15% between the two facial tissue sources (facial skin (6) and eyelids (1)). The genetic distance and rate of third-position nucleotide transition/transversion were 0.0125, 2.7 (3/1) among the five Chinese isolates, 0.0094, 3.1 (3/1) between the two geographical isolate groups, and 0.0217, 4.4 (3/1) between the two facial tissue sources. Phylogenetic trees showed that D. folliculorum from the two geographical isolate groups did not form sister clades, while those from different facial tissue sources did. According to the molecular characteristics, it appears that subspecies differentiation might not have occurred and that D. folliculorum isolates from the two geographical sources are of the same population. However, population differentiation might be occurring between isolates from facial skin and eyelids.


Asunto(s)
Ciclooxigenasa 1/genética , Ácaros/enzimología , Ácaros/genética , Animales , Secuencia de Bases , China , Clonación Molecular , ADN Mitocondrial/genética , Humanos , Infestaciones por Ácaros/parasitología , Ácaros/clasificación , Mitocondrias/enzimología , Mitocondrias/genética , Datos de Secuencia Molecular , Filogenia , Homología de Secuencia de Ácido Nucleico , España , Especificidad de la Especie
6.
Parasitol Res ; 112(11): 3969-77, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23996126

RESUMEN

Demodex caprae infests the hair follicles and sebaceous glands of goats worldwide, which not only seriously impairs goat farming, but also causes a big economic loss. However, there are few reports on the DNA level of D. caprae. To reveal the taxonomic position of D. caprae within the genus Demodex, the present study conducted phylogenetic analysis of D. caprae based on mt16S rDNA sequence data. D. caprae adults and eggs were obtained from a skin nodule of the goat suffering demodicidosis. The mt16S rDNA sequences of individual mite were amplified using specific primers, and then cloned, sequenced, and aligned. The sequence divergence, genetic distance, and transition/transversion rate were computed, and the phylogenetic trees in Demodex were reconstructed. Results revealed the 339-bp partial sequences of six D. caprae isolates were obtained, and the sequence identity was 100% among isolates. The pairwise divergences between D. caprae and Demodex canis or Demodex folliculorum or Demodex brevis were 22.2-24.0%, 24.0-24.9%, and 22.9-23.2%, respectively. The corresponding average genetic distances were 2.840, 2.926, and 2.665, and the average transition/transversion rates were 0.70, 0.55, and 0.54, respectively. The divergences, genetic distances, and transition/transversion rates of D. caprae versus the other three species all reached interspecies level. The five phylogenetic trees all presented that D. caprae clustered with D. brevis first, and then with D. canis, D. folliculorum, and Demodex injai in sequence. In conclusion, D. caprae is an independent species, and it is closer to D. brevis than to D. canis, D. folliculorum, or D. injai.


Asunto(s)
Ácaros y Garrapatas/clasificación , Ácaros y Garrapatas/genética , ADN Mitocondrial/genética , ADN Ribosómico/genética , ARN Ribosómico 16S/genética , Animales , Análisis por Conglomerados , ADN Mitocondrial/química , ADN Ribosómico/química , Variación Genética , Enfermedades de las Cabras/parasitología , Cabras , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN , Infestaciones por Garrapatas/parasitología
7.
Parasitol Res ; 112(11): 3703-11, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23949243

RESUMEN

Classification of Demodex mites has long depended on hosts and morphological characteristics. However, the fact that two species coexist in the same host and phenotype is easily influenced by environment causes difficulty and indeterminacy in traditional classification. Genotype, which directly reflects the molecular structure characteristics, is relatively stable. In this study, species identification of four phenotypes of human Demodex mites was conducted. Mites were morphologically classified into four phenotypes: long- and short-bodied Demodex folliculorum with finger-like terminus and Demodex brevis with finger- or cone-like terminus. The mitochondrial 16S ribosomal DNA (rDNA) fragment of individual mite was amplified, cloned, sequenced, and aligned. Sequence divergences, genetic distances, transition/transversion rates, and phylogenetic trees were analyzed. The results demonstrated that the 16S rDNA sequence of three phenotypes with finger-like terminus was 337 bp, and that of phenotype with cone-like terminus was 342 bp. The divergences, genetic distances, and transition/transversion rates among the three phenotypes with finger-like terminus were 0.0-2.7%, 0.000-0.029, and 5.0-7/0 (5/1-7/0), respectively, indicating an intraspecific variation. Yet, those between these three phenotypes and the one with cone-like terminus were 21.6-22.8%, 2.510-2.589, and 0.47-0.59 (22/47-27/46), respectively, suggesting an interspecific variation. The five phylogenetic trees showed that the three phenotypes with finger-like terminus clustered into one branch, while the phenotype with cone-like terminus clustered into another. In conclusion, terminus is a major morphological characteristic for the identification of human Demodex species. The three phenotypes with finger-like terminus belong to D. folliculorum, while the phenotype with cone-like terminus belongs to D. brevis. Molecular identification can verify and replenish morphological identification.


Asunto(s)
Ácaros y Garrapatas/clasificación , Ácaros y Garrapatas/genética , ADN Mitocondrial/genética , ADN Ribosómico/genética , ARN Ribosómico 16S/genética , Ácaros y Garrapatas/anatomía & histología , Animales , Clonación Molecular , Análisis por Conglomerados , ADN Mitocondrial/química , ADN Ribosómico/química , Variación Genética , Genotipo , Microscopía , Datos de Secuencia Molecular , Fenotipo , Filogenia , ARN Ribosómico 16S/química , Análisis de Secuencia de ADN
8.
J Zhejiang Univ Sci B ; 13(3): 192-202, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22374611

RESUMEN

Until now, etiology of acne vulgaris is still uncertain. Although clinicians usually deny the association between Demodex infestation and acne vulgaris, it has been proved in some clinical practices. To confirm the association between Demodex infestation and acne vulgaris, a meta-analysis was conducted. Predefined selection criteria were applied to search all published papers that analyzed the association between Demodex infestation and acne vulgaris (January 1950 to August 2011) in ISI Web of Knowledge, MEDLINE, and China National Knowledge Infrastructure (CNKI) databases. A meta-analysis was performed to calculate odds ratios (ORs) and 95% confidence intervals (CIs) based on fixed effects models or random effects models. We enrolled the 60 Chinese and 3 English papers in this meta-analysis, which covered Turkey and 25 different provinces/municipalities in China and 42130 participants including students and residents, aged from 1 to 78 years. The pooled OR in random effects models is 2.80 (95% CI, 2.34-3.36). Stability is robust according to sensitivity analysis. The fail-safe number is 18477, suggesting that at least 18477 articles with negative conclusions would be needed to reverse the conclusion that acne vulgaris was related to Demodex infestation. So the effect of publication bias was insignificant and could be ignored. It was concluded that acne vulgaris is associated with Demodex infestation. This indicates that when regular treatments for acne vulgaris are ineffective, examination of Demodex mites and necessary acaricidal therapies should be considered.


Asunto(s)
Acné Vulgar/etiología , Infestaciones por Ácaros/complicaciones , Animales , Estudios de Casos y Controles , Interpretación Estadística de Datos , Humanos , Infestaciones por Ácaros/parasitología , Ácaros/patogenicidad , Oportunidad Relativa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA