Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Small Methods ; : e2400551, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967170

RESUMEN

As information messengers for cell-to-cell communication, exosomes, typically small membrane vesicles (30-150 nm), play an imperative role in the physiological and pathological processes of living systems. Accumulating studies have demonstrated that exosomes are potential biological candidates for theranostics, including liquid biopsy-based diagnosis and drug delivery. However, their clinical applications are hindered by several issues, especially their unspecific detection and insufficient targeting ability. How to upgrade the accuracy of exosome-based theranostics is being widely explored. Aptamers, benefitting from their admirable characteristics, are used as excellent molecular recognition elements to empower exosomes for precision theranostics. With high affinity against targets and easy site-specific modification, aptamers can be incorporated with platforms for the specific detection of exosomes, thus providing opportunities for advancing disease diagnostics. Furthermore, aptamers can be tailored and functionalized on exosomes to enable targeted therapeutics. Herein, this review emphasizes the empowering of exosomes by aptamers for precision theranostics. A brief introduction of exosomes and aptamers is provided, followed by a discussion of recent progress in aptamer-based exosome detection for disease diagnosis, and the emerging applications of aptamer-functionalized exosomes for targeted therapeutics. Finally, current challenges and opportunities in this research field are presented.

2.
Luminescence ; 39(6): e4804, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38859763

RESUMEN

Early and sensitive detection of tobacco mosaic virus (TMV) is of great significance for improving crop yield and protecting germplasm resources. Herein, we constructed a novel fluorescence sensor to detect TMV RNA (tRNA) through double strand specific nuclease (DSN) cycle and activator regenerative electron transfer atom transfer radical polymerization (ARGET ATRP) dual signal amplification strategy. The hairpin DNA complementarily paired with tRNA was used as a recognition unit to specifically capture tRNA. By the double-stranded DNA hydrolyzed with DSN, tRNA is released to open more hairpin DNA, and more complementary DNA (cDNA) is bound to the surface of the magnetic beads (MBs) to achieve the first amplification. After binding with the initiator, the cDNA employed ARGET ATRP to attach more fluorescent signal molecules to the surface of MBs, thus achieving the second signal amplification. Under the optimal experimental conditions, the logarithm of fluorescence intensity versus tRNA concentration showed a good linear relationship in the range of 0.01-100 pM, with a detection limit of 1.03 fM. The limit of detection (LOD) was calculated according to LOD = 3 N/S. Besides, the sensor showed good reproducibility and stability, which present provided new method for early and highly sensitive detection for plant viruses.


Asunto(s)
ARN Viral , Virus del Mosaico del Tabaco , Virus del Mosaico del Tabaco/genética , Virus del Mosaico del Tabaco/química , ARN Viral/análisis , Fluorescencia , Límite de Detección , Técnicas Biosensibles/métodos , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia
3.
Chemistry ; 29(65): e202301602, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37622405

RESUMEN

The levels of KRAS G12C point mutation is recognized to be closely related to the earlier diagnosis of non-small cell lung cancer (NSCLC). Here, based on nitrogen-doped graphene quantum dots (NGQDs) and photo-induced electron/energy transfer reversible addition-fragment chain transfer (PET-RAFT) signal amplification strategy, we fabricated a novel electrochemiluminescence (ECL) biosensor for the detection of KRAS G12C mutation for the first time. NGQDs as ECL-emitting species with cathodic ECL were prepared by a simple calcination method. Firstly, KRAS G12C mutation DNA, i. e., target DNA (tDNA), was captured by specific identification with hairpin DNA (hDNA). Then, PET-RAFT was initiated by blue light, and large numbers of monomers were successfully polymerized to form controllable polymer chains. Lastly, massive NGQDs was introduced via amidation reaction with N-(3-aminopropyl)methacrylamide hydrochloride (APMA), which significantly amplified the ECL signal intensity. Under optimal conditions, this biosensor achieved a good linear relationship between ECL intensity and logarithm of the levels of KRAS G12C mutation in the range from 10 fM to 10 nM. Moreover, this strategy exhibited high selectivity and excellent applicability for KRAS G12C mutation detection in the serum samples. Therefore, this biosensor has great potential in clinical diagnosis and practical application.


Asunto(s)
Técnicas Biosensibles , Carcinoma de Pulmón de Células no Pequeñas , Grafito , Neoplasias Pulmonares , Puntos Cuánticos , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Nitrógeno , Mediciones Luminiscentes/métodos , ADN , Técnicas Biosensibles/métodos , Mutación , Tomografía de Emisión de Positrones
4.
Talanta ; 262: 124659, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37220688

RESUMEN

Accurate and ultrasensitive detection of cytokeratin 19 fragment (CYFRA21-1) is of vital importance for screening and diagnosis of potential lung cancer patient. In this paper, surface-modified upconversion nanomaterials (UCNPs) capable of aggregation by atom transfer radical polymerization (ATRP) were used as luminescent materials for the first time to achieve signal-stable, low-biological background, and sensitive detection of CYFRA21-1. Upconversion nanomaterials (UCNPs) feature extremely low biological background signals and narrow emission peaks, making them ideal sensor luminescent materials. The combination of UCNPs and ATRP not only improves sensitivity, but also reduces biological background interference for detecting CYFRA21-1. The target CYFRA21-1 was captured by specific binding of the antigen and the antibody. Subsequently, the end of the sandwich structure with the initiator reacts with monomers modified on UCNPs. Then, massive UCNPs are aggregated by ATRP that amplify the detection signal exponentially. Under optimal conditions, a linear calibration plot of the logarithm of CYFRA21-1 concentration versus the upconversion fluorescence intensity was obtained in the range of 1 pg/mL to 100 µg/mL with a detection limit of 38.7 fg/mL. The proposed upconversion fluorescent platform can distinguish the analogues of the target with excellent selectivity. Besides, the precision and accuracy of the developed upconversion fluorescent platform were verified by clinical methods. As an enhanced upconversion fluorescent platform of CYFRA21-1, it is expected to be useful in screening potential patients with NSCLC and provides a promising solution for the high-performance detection of other tumor markers.


Asunto(s)
Técnicas Biosensibles , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Nanopartículas , Humanos , Antígenos de Neoplasias , Queratina-19 , Neoplasias Pulmonares/diagnóstico , Técnicas Biosensibles/métodos , Límite de Detección , Nanopartículas/química
5.
IEEE Trans Cybern ; 53(12): 7881-7894, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37022073

RESUMEN

Iterative learning model predictive control (ILMPC) has been recognized as an excellent batch process control strategy for progressively improving tracking performance along trials. However, as a typical learning-based control method, ILMPC generally requires the strict identity of trial lengths to implement 2-D receding horizon optimization. The randomly varying trial lengths extensively existing in practice can result in the insufficiency of learning prior information, and even the suspension of control update. Regarding this issue, this article embeds a novel prediction-based modification mechanism into ILMPC, to adjust the process data of each trial into the same length by compensating the data of absent running periods with the predictive sequences at the end point. Under this modification scheme, it is proved that the convergence of the classical ILMPC is guaranteed by an inequality condition relative with the probability distribution of trial lengths. Considering the practical batch process with complex nonlinearity, a 2-D neural-network predictive model with parameter adaptability along trials is established to generate highly matched compensation data for the prediction-based modification. To best utilize the real process information of multiple past trials while guaranteeing the learning priority of the latest trials, an event-based switching learning structure is proposed in ILMPC to determine different learning orders according to the probability event with respect to the trial length variation direction. The convergence of the nonlinear event-based switching ILMPC system is analyzed theoretically under two situations divided by the switching condition. The simulations on a numerical example and the injection molding process verify the superiority of the proposed control methods.

6.
Food Chem ; 421: 136176, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37098309

RESUMEN

An electrochemical sensor based on environmentally friendly eRAFT polymerization was developed for the detection of aflatoxin B1 (AFB1) in food and herbal medicine. Two biological probes, aptamer (Ap) and antibody (Ab), were used to specifically recognize AFB1, and a large number of ferrocene polymers were grafted on the electrode surface by eRAFT polymerization, which greatly improved the specificity and sensitivity of the sensor. The detection limit of AFB1 was 37.34 fg/mL. In addition, the recovery rate was 95.69% to 107.65% and the RSD was 0.84% to 4.92% by detecting 9 spiked samples. The delighted reliability of this method was verified by HPLC-FL.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Polímeros , Reproducibilidad de los Resultados , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Aflatoxina B1/análisis , Límite de Detección
7.
Talanta ; 257: 124360, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36801566

RESUMEN

Plant diseases caused by tobacco mosaic viruses (TMV) reduce the yield and quality of crops and cause significant losses. Early detection and prevention of TMV has important value of research and reality. Herein, a fluorescent biosensor was constructed for highly sensitive detection of TMV RNA (tRNA) based on the principle of base complementary pairing, polysaccharides and atom transfer radical polymerization by electron transfer activated regeneration catalysts (ARGET ATRP) as double signal amplification strategy. The 5'-end sulfhydrylated hairpin capture probe (hDNA) was first immobilized on amino magnetic beads (MBs) by a cross-linking agent, which specifically recognizes tRNA. Then, chitosan binds to BIBB, providing numerous active sites for fluorescent monomer polymerization, which successfully significantly amplifying the fluorescent signal. Under optimal experimental conditions, the proposed fluorescent biosensor for the detection of tRNA has a wide detection range from 0.1 pM to 10 nM (R2 = 0.998) with a limit of detection (LOD) as low as 1.14 fM. In addition, the fluorescent biosensor showed satisfactory applicability for the qualitative and quantitative analysis of tRNA in real samples, thereby demonstrating the potential in the field of viral RNA detection.


Asunto(s)
Técnicas Biosensibles , Virus del Mosaico del Tabaco , ARN , Polisacáridos , Límite de Detección
8.
Zhongguo Zhong Yao Za Zhi ; 47(20): 5452-5459, 2022 Oct.
Artículo en Chino | MEDLINE | ID: mdl-36471959

RESUMEN

Despite the distinctive characteristics and remarkable efficacy, animal medicine is stenchy, which decreases the comp-liance of patients. At the moment, the research on the method for deodorizing animal medicines lags behind. To be specific, the components related to the odor and the basic properties transformation of the components are unclear and there is a lack of specific deodorizing method. This study aims to clarify the main components related to the stench of animal medicine, such as aldehydes, amines, trimethylamines and sulfur compounds, and their basic properties, and to explore their metabolism and transformation in vivo and in vitro, which is expected to serve as a reference for the research on deodorization of animal medicine and development of new techniques.


Asunto(s)
Aldehídos , Odorantes , Animales
9.
Biol Res ; 55(1): 35, 2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36435789

RESUMEN

Extracellular vesicles (EVs) are naturally released membrane vesicles that act as carriers of proteins and RNAs for intercellular communication. With various biomolecules and specific ligands, EV has represented a novel form of information transfer, which possesses extremely outstanding efficiency and specificity compared to the classical signal transduction. In addition, EV has extended the concept of signal transduction to intercellular aspect by working as the collection of extracellular information. Therefore, the functions of EVs have been extensively characterized and EVs exhibit an exciting prospect for clinical applications. However, the biogenesis of EVs and, in particular, the regulation of this process by extracellular signals, which are essential to conduct further studies and support optimal utility, remain unclear. Here, we review the current understanding of the biogenesis of EVs, focus on the regulation of this process by extracellular signals and discuss their therapeutic value.


Asunto(s)
Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Comunicación Celular/fisiología , Transducción de Señal , Transporte Biológico , ARN/metabolismo
10.
J Pharm Biomed Anal ; 220: 115006, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36007307

RESUMEN

Fever in children is one of the most common symptoms of pediatric diseases and the most common complaint in pediatric clinics, especially in the emergency department. Diseases such as pneumonia, sepsis, and meningitis are leading causes of death in children, and the early manifestations of these diseases are accompanied by fever symptoms. Accurate diagnosis and real-time monitoring of the status of febrile children, rapid and effective identification of the cause, and treatment can have a positive impact on relieving their symptoms and improving their quality of life. In recent years, wearable diagnostic sensors have attracted special attention for their high flexibility, real-time monitoring, and sensitivity. Temperature sensors and heart rate sensors have provided new advances in detecting children's body temperature and heart rate. Furthermore, some novel formulations have also received wide attention for addressing bottlenecks in medication administration for febrile children, such as difficulty in swallowing and inaccurate dosing. In this context, the present review provides recent advances of novel wearable medical sensor devices for diagnosing fever. Moreover, the application progress of innovative dosage forms of classical antipyretic drugs for children is presented. Finally, challenges and prospects of wearable sensor-based diagnostics and novel agent-based treatment of fever in children are discussed in brief.


Asunto(s)
Antipiréticos , Dispositivos Electrónicos Vestibles , Niño , Fiebre/diagnóstico , Fiebre/tratamiento farmacológico , Humanos , Calidad de Vida
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 280: 121535, 2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-35752041

RESUMEN

In this work, a novel fluorescent biosensor for sensitive detecting of aflatoxin B1 (AFB1) was constructed through activators regenerated by electron transfer for atom transfer radical polymerization (ARGET-ATRP) for the first time. The AFB1 antigen was immobilized on the carboxy magnetic beads (MBs) by forming a sandwich-type "aptamer-antigen-antibody" immune system. Then, acrylamid (AM) was introduced through ARGET-ATRP to provide binding sites for the signaling molecules. Finally, carboxy porphyrins (TPP*) were connected with monomers through an amide bond and fixed on the MBs. Under the optimal experimental conditions, the fluorescence intensity and the logarithm of the concentration of AFB1 showed a good relationship from 100 fg mL-1 to 100 ng mL-1, with the limit of detection (LOD) as low as 8.38 fg mL-1. In addition, the method shows good selectivity and excellent reproducibility. More importantly, the biosensor has applied to the quantitative analysis of AFB1 in four Chinese medicines, and this strategy could potentially serve as a novel means for sensitive detecting of AFB1 in complex matrices.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Porfirinas , Aflatoxina B1/análisis , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Límite de Detección , Polimerizacion , Reproducibilidad de los Resultados
12.
Mikrochim Acta ; 189(3): 84, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35129694

RESUMEN

A novel fluorescence assay is proposed through activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) strategy for alkaline phosphatase (ALP) activity detection. First of all, 2-bromo-2-methylpropionic acid (BMP) was employed as the initiator to modify on the surface of the magnetic nanoparticle (Fe3O4-MNP) by amide bonding. Then, ascorbic acid (AA) produced by ALP catalyzed the phosphate group removal from L-ascorbic acid 2-phosphate sesquimagnesium salt hydrate (AAPS), which underwent a redox reaction with Cu(II) and the product Cu(I) triggered the ARGET ATRP reaction. Finally, a strong fluorescent signal could be detected at 514 nm due to numerous fluorescent monomers being grafted to the Fe3O4-MNPs surface (Ex = 490 nm, Em = 514 nm). Under optimal experimental conditions, the linear range of this fluorometric assay for ALP activity was 1-80 mU mL-1, and the detection limit was 0.68 mU mL-1. The method exhibited excellent selectivity and satisfactory results were obtained in the inhibition rate and human serum experiments. Therefore, this ALP activity detection strategy has great potential for clinically relevant disease detection and drug screening. A novel fluorescence strategy for alkaline phosphatase activity detection based on the dephosphorylation property of alkaline phosphatase and ARGET ATRP reaction.


Asunto(s)
Fosfatasa Alcalina/sangre , Técnicas Biosensibles , Fosfatasa Alcalina/metabolismo , Transporte de Electrón , Humanos , Polimerizacion , Espectrometría de Fluorescencia
13.
IEEE Trans Cybern ; 52(6): 4147-4160, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33055043

RESUMEN

Iterative learning model-predictive control (ILMPC) is very popular in controlling the batch process since it possesses not only the learning ability along batches but also the strong time-domain tracking properties. However, for a fast batch process with strong nonlinear dynamics, the application of the ILMPC is challenging due to the difficulty in balancing the computational efficiency and tracking accuracy. In this article, an efficient iterative learning predictive functional control (ILPFC) is proposed. The original nonlinear system is linearized along the reference trajectory to derive a 2-D tracking-error predictive model. The linearization error is compensated by utilizing the Lipschitz condition so that the objective function can be formulated with the upper bound of the actual tracking error. For enhancing control efficiency, predictive functional control (PFC) is applied in the time domain, which reduces the dimension of the decision variable in order to effectively cut down the computational burden. The stability and convergence of this ILPFC with terminal constraint are analyzed theoretically. Simulations on an unmanned ground vehicle and a typical fast batch reactor verify the effectiveness of the proposed control algorithm.

14.
Transl Oncol ; 15(1): 101281, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34875482

RESUMEN

According to the 2020 data released by the International Agency for Research on Cancer, breast cancer has surpassed lung cancer as the world's most newly diagnosed first-time cancer. Compared with patients with other types of cancer, those with breast cancer experience greater mental stress and more severe psychological impacts because of the life-threatening diagnosis, physical changes, treatment side effects, and family and social life dysfunctions. These usually manifest as anxiety, depression, nervousness, and insomnia, all of which elicit stress responses. Particularly under chronic stress, the continuous release of neurotransmitters from the neuroendocrine system can have a highly profound impact on the occurrence and prognosis of breast cancer. However, because of the complex mechanisms underlying chronic stress and the variability in individual tolerance, evidence of the role of chronic stress in the occurrence and evolution of breast cancer remains unclear. This article reviewed previous research on the correlation between chronic stress and the occurrence and development of breast cancer, particularly the molecular mechanism through which chronic stress promotes breast cancer via neurotransmitters secreted by the nervous system. We also review the progress in the development of potential drugs or blockers for the treatment of breast cancer by targeting the neuroendocrine system.

15.
Biol. Res ; 55: 35-35, 2022. ilus
Artículo en Inglés | LILACS | ID: biblio-1429901

RESUMEN

Extracellular vesicles (EVs) are naturally released membrane vesicles that act as carriers of proteins and RNAs for intercellular communication. With various biomolecules and specific ligands, EV has represented a novel form of information transfer, which possesses extremely outstanding efficiency and specificity compared to the classical signal transduction. In addition, EV has extended the concept of signal transduction to intercellular aspect by working as the collection of extracellular information. Therefore, the functions of EVs have been extensively characterized and EVs exhibit an exciting prospect for clinical applications. However, the biogenesis of EVs and, in particular, the regulation of this process by extracellular signals, which are essential to conduct further studies and support optimal utility, remain unclear. Here, we review the current understanding of the biogenesis of EVs, focus on the regulation of this process by extracellular signals and discuss their therapeutic value.


Asunto(s)
Vesículas Extracelulares/metabolismo , Transporte Biológico , ARN/metabolismo , Transducción de Señal , Comunicación Celular/fisiología
16.
Eur J Med Chem ; 226: 113857, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34628234

RESUMEN

The Coronavirus disease, 2019 (COVID-19) is caused by severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2), which poses a major threat to human life and health. Given its continued development, limiting the spread of COVID-19 in the population remains a challenging task. Currently, multiple therapies are being tried around the world to deal with SARS-CoV-2 infection, and a variety of studies have shown that natural products have a significant effect on COVID-19 patients. The combination of SARS-CoV-2 S protein with Angiotensin converting enzyme II(ACE2) of host cell to promote membrane fusion is an initial critical step for SARS-CoV-2 infection. Therefore, screening natural products that inhibit the binding of SARS-CoV-2 S protein and ACE2 also provides a feasible strategy for the treatment of COVID-19. Establishment of high throughput screening model is an important basis and key technology for screening S protein-ACE2 blockers. Based on this, the molecular structures of SARS-CoV-2 and ACE2 and their processes in the life cycle of SARS-CoV-2 and host cell infection were firstly reviewed in this paper, with emphasis on the methods and techniques of screening S protein-ACE2 blockers, including Virtual Screening (VS), Surface Plasmon Resonance (SPR), Biochromatography, Biotin-avidin with Enzyme-linked Immunosorbent assay and Gene Chip Technology. Furthermore, the technical principle, advantages and disadvantages and application scope were further elaborated. Combined with the application of the above screening technologies in S protein-ACE2 blockers, a variety of natural products, such as flavonoids, terpenoids, phenols, alkaloids, were summarized, which could be used as S protein-ACE2 blockers, in order to provide ideas for the efficient discovery of S protein-ACE2 blockers from natural sources and contribute to the development of broad-spectrum anti coronavirus drugs.


Asunto(s)
Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Antivirales/farmacología , Productos Biológicos/química , COVID-19/virología , Descubrimiento de Drogas , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores
17.
Front Pharmacol ; 12: 674416, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34366843

RESUMEN

Background: Clinical trials have proven that indigo naturalis is a candidate drug for treating ulcerative colitis (UC), but its therapeutic mechanism is still unclear. Purpose: This study aimed to evaluate the protective effect and mechanism of indigo naturalis to treat mice with dextran sulfate sodium (DSS)-induced UC. Methods: DSS-induced UC mice were treated with indigo naturalis (200 mg/kg), indigo (4.76 mg/kg), and indirubin (0.78 mg/kg) for 1 week. The anti-UC mechanism of indigo naturalis was studied by pathological section, inflammatory factor, western blot, and 16S rRNA sequencing. Results: According to body weight change, disease activity index, and colon length, indigo naturalis had the strongest anti DSS-induced UC effect, followed by indirubin and indigo. Pathological section showed that indigo naturalis, indigo, and indirubin could reduce the infiltration of inflammatory cells, increase the secretion of intestinal mucus, and repair the intestinal mucosa. Indigo naturalis, indigo, and indirubin could reduce IL-1ß,IL-6, and TNF-α by inhibiting TLR4/MyD88/NF-κB signal transduction. Indigo naturalis and indigo could also reduce IgA and IgG both in serum and colon tissue. In addition, indigo naturalis, indigo, and indirubin could adjust the gut microbiota structure of DSS-induced UC mice, reducing the ratio of Firmicutes/Bacteroidetes and increasing the abundance of probiotics. Conclusion: Indigo and indirubin are one of the main anti-UC components of indigo naturalis. INN could regulate intestinal flora, reduce inflammation, repair intestinal mucosa, and improve the physiological status of DSS-induced UC mice and its anti-UC mechanism may be involved in inhibiting TLR4/MyD88/NF-κB signal transduction.

18.
Zhongguo Zhong Yao Za Zhi ; 46(13): 3180-3187, 2021 Jul.
Artículo en Chino | MEDLINE | ID: mdl-34396735

RESUMEN

The soaking and fermentation of Baphicacanthus cusia( Nees),the important intermediate link of Indigo Naturalis processing,facilitates the synthesis of indigo and indirubin precursors and the dissolution of endogenous enzymes and other effective components,while the role of microorganisms in the fermentation is ignored. The present study investigated the changes of microbial community structure in Indigo Naturalis processing based on 16 S amplicon sequencing and bioinformatics. Meanwhile,the contents of indigo,indirubin,isatin,tryptanthrin,indole glycoside,etc. were determined to explore the correlation between the microorganisms and the alterations of the main components. As demonstrated by the results,the microbial diversity decreased gradually with the fermentation,which bottomed out after the addition of lime. Proteobacteria,Bacteroidetes,and Firmicutes were the main dominant communities in the fermentation. The relative abundance of Proteobacteria declined gradually with the prolongation of fermentation time,and to the lowest level after the addition of lime. The relative abundance of Firmicutes increased,and that of Bacteroidetes decreased first and then increased. The contents of effective substances in Indigo Naturalis also showed different variation tendencies. As fermentation went on,indole glycoside decreased gradually; indigo first increased and then decreased; indirubin and isatin first decreased and then increased; tryptanthrin gradually increased. Those changes were presumedly related to the roles of microorganisms in the synthesis of different components. This study preliminarily clarified the important role of microorganisms in the soaking and fermentation and provided a scientific basis for the control of Indigo Naturalis processing and the preparation of high-quality Indigo Naturalis.


Asunto(s)
Indigofera , Microbiota , Fermentación , Carmin de Índigo , Indoles
19.
Zhongguo Zhong Yao Za Zhi ; 46(13): 3188-3197, 2021 Jul.
Artículo en Chino | MEDLINE | ID: mdl-34396736

RESUMEN

Indigo Naturalis has a long history of medicinal use with particularity and complexity in its processing. Before the Ming dynasty,Indigo Naturalis was extracted from the top layer of zymotic fluid,called " purified Indigo Naturalis". In modern processing,the precipitate " crude Indigo Naturalis" is dried to produce Indigo Naturalis after impurity removal. The form of Indigo Naturalis slices has undergone significant changes in ancient and modern times. In view of this,the quality comparison between crude Indigo Naturalis and purified Indigo Naturalis was conducted in this study with modern analytical techniques. Firstly,chemical composition was analyzed with UPLC-Q-TOF-MS,and the chemical composition of scent with HS-SPME/GC-MS/MS. The content of indigo,indirubin,total ash,and water-soluble extract was determined as well as the inorganic composition in crude Indigo Naturalis and purified Indigo Naturalis. Then,their microscopic morphology was observed and the surface element composition was investigated. Finally,the antipyretic activities of crude Indigo Naturalis and purified Indigo Naturalis were compared in the fever rat model induced by lipopolysaccharide and 2,4-dinitrophenol. The results demonstrated that the purified Indigo Naturalis had a faster and more lasting antipyretic effect,while the crude Indigo Naturalis had almost no antipyretic effect. This study is of great significance to the research on processing technology of Indigo Naturalis and provides reference for the formulation of its quality standards,production specifications and calibration procedures.


Asunto(s)
Carmin de Índigo , Indigofera , Animales , Extractos Vegetales , Ratas , Espectrometría de Masas en Tándem
20.
Comput Intell Neurosci ; 2021: 6650962, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33953738

RESUMEN

Similar judicial case matching aims to enable an accurate selection of a judicial document that is most similar to the target document from multiple candidates. The core of similar judicial case matching is to calculate the similarity between two fact case documents. Owing to similar judicial case matching techniques, legal professionals can promptly find and judge similar cases in a candidate set. These techniques can also benefit the development of judicial systems. However, the document of judicial cases not only is long in length but also has a certain degree of structural complexity. Meanwhile, a variety of judicial cases are also increasing rapidly; thus, it is difficult to find the document most similar to the target document in a large corpus. In this study, we present a novel similar judicial case matching model, which obtains the weight of judicial feature attributes based on hash learning and realizes fast similar matching by using a binary code. The proposed model extracts the judicial feature attributes vector using the bidirectional encoder representations from transformers (BERT) model and subsequently obtains the weighted judicial feature attributes through learning the hash function. We further impose triplet constraints to ensure that the similarity of judicial case data is well preserved when projected into the Hamming space. Comprehensive experimental results on public datasets show that the proposed method is superior in the task of similar judicial case matching and is suitable for large-scale similar judicial case matching.


Asunto(s)
Algoritmos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA