Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Imeta ; 3(4): e198, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39135685

RESUMEN

The duck gastrointestinal tract (GIT) harbors an abundance of microorganisms that play an important role in duck health and production. Here, we constructed the first relatively comprehensive duck gut microbial gene catalog (24 million genes) and 4437 metagenome-assembled genomes using 375 GIT metagenomic samples from four different duck breeds across five intestinal segments under two distinct rearing conditions. We further characterized the intestinal region-specific microbial taxonomy and their assigned functions, as well as the temporal development and maturation of the duck gut microbiome. Our metagenomic analysis revealed the similarity within the microbiota of the foregut and hindgut compartments, but distinctive taxonomic and functional differences between distinct intestinal segments. In addition, we found a significant shift in the microbiota composition of newly hatched ducks (3 days), followed by increased diversity and enhanced stability across growth stages (14, 42, and 70 days), indicating that the intestinal microbiota develops into a relatively mature and stable community as the host duck matures. Comparing the impact of different rearing conditions (with and without water) on duck cecal microbiota communities and functions, we found that the bacterial capacity for lipopolysaccharide biosynthesis was significantly increased in ducks that had free access to water, leading to the accumulation of pathogenic bacteria and antibiotic-resistance genes. Taken together, our findings expand the understanding of the microbiome signatures linked to intestinal regional, temporal development, and rearing conditions in ducks, which highlight the significant impact of microbiota on poultry health and production.

2.
Mikrochim Acta ; 191(8): 486, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060485

RESUMEN

Novel cathodic and anodic dual-emitting electrochemiluminescence (ECL) of Ru(bpy)32+ and α-keto acids system are studied for the first time. Based on their cathodic and anodic ECL intensity, α-keto acids including oxalate, glyoxylic acid, pyruvic acid, and phenylglyoxylic acid can be directly sensitively detected. The limits of detection (LOD) of oxalate, glyoxylic acid, pyruvic acid, and phenylglyoxylic acid are 31.25 nM, 23.26 µM, 36.36 µM, and 18.52 µM, respectively. Possible mechanism of ECL produced is also proposed. Electrochemical results show that the reduction of oxygen at the cathode to produce ·OH is a vital step for cathodic and anodic dual-emitting ECL. Furthermore, using the enhancement strategy of S2O82-/Ag+ as coreactant accelerators is proposed considering that decarboxylation of α-keto acids to produce acyl radical can be achieved via S2O82- or Ag+. Using the S2O82-/Ag+ enhancement strategy, the LOD of oxalate, glyoxylic acid, pyruvic acid, and phenylglyoxylic acid are improved and are 2.12 nM, 0.37 µM, 3.23 µM, and 0.28 µM, respectively. Coreactants of Ru(bpy)32+ with dual-emitting ECL are expanded, which includes additional substances with organic carboxylic acid characterized by the keto group in α-position. It also provides an effective way to enhance ECL and improve sensitivity. More importantly, cathodic and anodic dual-emitting ECL greatly improves the selectivity.

3.
Imeta ; 3(1): e160, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38868506

RESUMEN

Pig gastrointestinal tracts harbor a heterogeneous and dynamic ecosystem populated with trillions of microbes, enhancing the ability of the host to harvest energy from dietary carbohydrates and contributing to host adipogenesis and fatness. However, the microbial community structure and related mechanisms responsible for the differences between the fatty phenotypes and the lean phenotypes of the pigs remained to be comprehensively elucidated. Herein, we first found significant differences in microbial composition and potential functional capacity among different gut locations in Jinhua pigs with distinct fatness phenotypes. Second, we identified that Jinhua pigs with lower fatness exhibited higher levels of short-chain fatty acids in the colon, highlighting their enhanced carbohydrate fermentation capacity. Third, we explored the differences in expressed carbohydrate-active enzyme (CAZyme) in pigs, indicating their involvement in modulating fat storage. Notably, Clostridium butyricum might be a representative bacterial species from Jinhua pigs with lower fatness, and a significantly higher percentage of its genome was dedicated to CAZyme glycoside hydrolase family 13 (GH13). Finally, a subsequent mouse intervention study substantiated the beneficial effects of C. butyricum isolated from experimental pigs, suggesting that it may possess characteristics that promote the utilization of carbohydrates and hinder fat accumulation. Remarkably, when Jinhua pigs were administered C. butyricum, similar alterations in the gut microbiome and host fatness traits were observed, further supporting the potential role of C. butyricum in modulating fatness. Taken together, our findings reveal previously overlooked links between C. butyricum and CAZyme function, providing insight into the basic mechanisms that connect gut microbiome functions to host fatness.

4.
Sci Total Environ ; 927: 172078, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38582109

RESUMEN

Archaea play a crucial role in microbial systems, including driving biochemical reactions and affecting host health by producing methane through hydrogen. The study of swine gut archaea has a positive significance in reducing methane emissions and improving feed utilization efficiency. However, the development and functional changes of archaea in the pig intestines have been overlooked for a long time. In this study, 54 fecal samples were collected from 36 parental pigs (18 boars and 18 pregnant/lactating sows), and 108 fecal samples from 18 offspring pigs during lactation, nursery, growing, and finishing stages were tracked and collected for metagenomic sequencing. We obtained 14 archaeal non-redundant metagenome-assembled genomes (MAGs). These archaea were classified as Methanobacteriota and Thermoplasmatota at the phylum level, and Methanobrevibacter, Methanosphaera, MX-02, and UBA71 at the genus level, involving hydrogenotrophic, methylotrophic, and acetoclastic pathways. The hydrogenotrophic pathway dominated the methanogenesis function, and the vast majority of archaea participated in it. Dietary changes profoundly affected the archaeal composition and methanogenesis function in pigs. The abundance of hydrogen-producing bacteria in parental pigs fed high-fiber diets was higher than that in offspring pigs fed low-fiber diets. The methanogenesis function was positively correlated with fiber decomposition functions and negatively correlated with the starch decomposition function. Increased abundance of sulfate reductase and fumarate reductase, as well as decreased acetate/propionate ratio, indicated that the upregulation of alternative hydrogen uptake pathways competing with methanogens may be the reason for the reduced methanogenesis function. These findings contribute to providing information and direction in the pig industry for the development of strategies to reduce methane emissions, improve feed efficiency, and maintain intestinal health.


Asunto(s)
Archaea , Metano , Animales , Metano/metabolismo , Archaea/genética , Porcinos , Heces/microbiología , Microbioma Gastrointestinal , Alimentación Animal/análisis , Dieta/veterinaria , Femenino , Metagenoma
5.
J Hazard Mater ; 468: 133811, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38382341

RESUMEN

Chlorine and its derivatives, such as sodium hypochlorite (NaClO) and chlorine dioxide, are frequently employed as disinfectants throughout the pork supply chain in China. Nevertheless, the extensive use of NaClO has the potential to cause the creation of 'chlorine-tolerant bacteria' and accelerate the evolution of antibiotic resistance. This study evaluated the efficacy of NaClO disinfection by examining alterations in the microbiome and resistome of a pork wholesale market (PWM), and bacteria isolation and analysis were performed to validate the findings. As expected, the taxonomic compositions of bacteria was significantly different before and after disinfection. Notably, Salmonella enterica (S. enterica), Salmonella bongori (S. bongori), Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneumoniae), and Pseudomonas aeruginosa (P. aeruginosa) were observed on all surfaces, indicating that the application of NaClO disinfection treatment in PWM environments for pathogenic bacteria is limited. Correlations were identified between antibiotic resistance genes (ARGs) associated with aminoglycosides (aph(3'')-I, aph(6')-I), quinolone (qnrB, abaQ), polymyxin (arnA, mcr-4) and disinfectant resistance genes (emrA/BD, mdtA/B/C/E/F). Furthermore, correlations were found between risk Rank I ARGs associated with aminoglycoside (aph(3')-I), tetracycline (tetH), beta_lactam (TEM-171), and disinfectant resistance genes (mdtB/C/E/F, emrA, acrB, qacG). Importantly, we found that Acinetobacter and Salmonella were the main hosts of disinfectant resistance genes. The resistance mechanisms of the ARGs identified in PWM were dominated by antibiotic deactivation (38.7%), antibiotic efflux (27.2%), and antibiotic target protection (14.4%). The proportion of genes encoding efflux pumps in the PWM resistome increased after disinfection. Microbial cultures demonstrated that the traits of microbial contamination and antibiotic resistane were consistent with those observed by metagenomic sequencing. This study highlights the possibility of cross-resistance between NaClO disinfectants and antibiotics, which should not be ignored.


Asunto(s)
Desinfectantes , Carne de Cerdo , Carne Roja , Porcinos , Animales , Antibacterianos/farmacología , Desinfección , Hipoclorito de Sodio , Escherichia coli , Cloro/farmacología , Desinfectantes/farmacología , Bacterias/genética , Aminoglicósidos , Halógenos
6.
Environ Pollut ; 342: 123070, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38056588

RESUMEN

Sodium hypochlorite (NaClO) and cadmium (Cd) are widely co-occurring in natural aquatic environment; however, no study has been conducted on effects of their combined exposure on aquatic organisms. To assess effects of exposure to NaClO and Cd in zebrafish larvae, we designed six treatment groups, as follows: control group, NaClO group (300 µg/L), 1/100 Cd group (48 µg/L), 1/30 Cd group (160 µg/L), NaClO+1/100 Cd group, and NaClO+1/30 Cd group analyzed behavior, neurological function and cardiac function. Results revealed that exposure to 1/30 Cd and NaClO+1/30 Cd caused abnormal embryonic development in larvae by altering body morphology and physiological indicators. Combined exposure to NaClO and 1/30 Cd affected the free-swimming activity and behavior of larvae in response to light-dark transition stimuli. Moreover, exposure to 1/30 Cd or NaClO+1/30 Cd resulted in a significant increase in tyrosine hydroxylase and acetylcholinesterase activities, as well as significant changes of various neurotransmitters. Lastly, exposure to 1/30 Cd or NaClO+1/30 Cd influenced the transcription of cardiac myosin-related genes and disturbed the myocardial contractile function. Altogether, our results suggested that combined exposure to NaClO and Cd induced oxidative damage in larvae, resulting in detrimental effects on nervous system and cardiac function, thus altering their swimming behavior.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Pez Cebra/fisiología , Cadmio/toxicidad , Hipoclorito de Sodio/farmacología , Larva , Acetilcolinesterasa , Neurotransmisores , Contaminantes Químicos del Agua/toxicidad
7.
Anim Microbiome ; 5(1): 55, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37941060

RESUMEN

BACKGROUND: The dissemination of antibiotic resistance genes (ARGs) poses a substantial threat to environmental safety and human health. Herein, we present a longitudinal paired study across the swine lifetime from birth to market, coupled with metagenomic sequencing to explore the dynamics of ARGs and their health risk in the swine fecal microbiome. RESULTS: We systematically characterized the composition and distribution of ARGs among the different growth stages. In total, 829 ARG subtypes belonging to 21 different ARG types were detected, in which tetracycline, aminoglycoside, and MLS were the most abundant types. Indeed, 134 core ARG subtypes were shared in all stages and displayed a growth stage-associated pattern. Furthermore, the correlation between ARGs, gut microbiota and mobile genetic elements (MGEs) revealed Escherichia coli represented the main carrier of ARGs. We also found that in most cases, the dominant ARGs could be transmitted to progeny piglets, suggesting the potential ARGs generation transmission. Finally, the evaluation of the antibiotic resistance threats provides us some early warning of those high health risk ARGs. CONCLUSIONS: Collectively, this relatively more comprehensive study provides a primary overview of ARG profile in swine microbiome across the lifetime and highlights the health risk and the intergenerational spread of ARGs in pig farm.

8.
Ann Med ; 55(2): 2261477, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37774039

RESUMEN

BACKGROUND: Inflammatory bowel disease (IBD) is a chronic inflammation of the gastrointestinal tract that co-occurs with gut microbiota dysbiosis; however, its etiology remains unclear. MicroRNA (miRNA)-microbiome interactions play an essential role in host health and disease. METHODS: To investigate the gut microbiome and host miRNA profiles in colitis, we used a Dextran Sulfate Sodium (DSS)-induced ulcerative colitis (UC) model. Metagenomic sequencing and metabolome profiling were performed to explore typical microbiota and metabolite signatures in colitis, whereas mRNA and miRNA sequencing were used to determine differentially expressed miRNAs and their target genes in the inflamed colon. RESULTS: A total of 986 miRNAs were identified between the two groups, with 41 upregulated and 21 downregulated miRNAs in colitis mice compared to the control group. Notably, the target genes of these significantly altered miRNAs were primarily enriched in the immune and inflammation-related pathways. Second, LEfSe analysis revealed bacterial biomarkers distinguishing the two groups, with significantly higher levels of commonly encountered pathogens such as Escherichia coli and Shigella flexneri in the UC group, whereas beneficial species such as Bifidobacterium pseudolongum were more abundant in the control group. Microbiota metabolites histamine, N-acetylhistamine, and glycocholic acid were found to be downregulated in colitis mice. Spearman correlation further revealed the potential crosstalk between the microbiota profile and colonic miRNA, revealing the possibility of microbiome-miRNA interactions involved in IBD development. CONCLUSIONS: Our data reveal the relationships between multi-omic features during UC and suggest that targeting specific miRNAs may provide new avenues for the development of effective miRNA-based therapeutics.


Asunto(s)
Colitis Ulcerosa , Colitis , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , MicroARNs , Humanos , Animales , Ratones , Colitis Ulcerosa/genética , MicroARNs/genética , MicroARNs/metabolismo , Multiómica , Colitis/inducido químicamente , Colitis/genética , Inflamación , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
9.
Mol Nutr Food Res ; 67(13): e2200884, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37183784

RESUMEN

SCORE: Probiotics extracellular vesicles (EVs) have shown potential as EV-based nanomaterials therapy for the treatment of inflammatory bowel disease (IBD). Although probiotic Clostridium butyricum has been reported to be protective in various models of intestinal inflammation, the therapeutic effects of C. butyricum-derived extracellular vesicles (CbEVs) in IBD remain to be demonstrated. METHODS AND RESULTS: In this study, multi-omics sequencing is combined with an in vitro model of lipopolysaccharide-induced RAW264.7 cells and an in vivo mouse model of dextran sodium sulfate-induced colitis to explore the regulatory impact and mechanism of CbEVs in ulcerative colitis. Through small RNA sequencing, the study finds that microRNA is involved in the alleviation of colonic inflammation under CbEVs treatment. Mechanistically, CbEVs restore miR-199a-3p expression, interacting with map3k4, and thereby suppress proinflammatory MAPK and NF-κB signaling. Additionally, metagenomic sequencing demonstrate that CbEVs alleviate bacterial dysbiosis in colitis mice and significantly reduces the abundance of the bacterial pathogens Escherichia coli and Shigella flexneri. Furthermore, CbEVs regulate the microbial tryptophan metabolites, which further improve intestinal barrier integrity and inhibit the inflammatory response in colitis mice. CONCLUSION: C. butyricum-derived extracellular vesicles can be a novel agent for the treatment of colitis and miR-199a-3p can be a potential target for IBD treatment.


Asunto(s)
Clostridium butyricum , Colitis Ulcerosa , Colitis , Vesículas Extracelulares , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , MicroARNs , Ratones , Animales , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Clostridium butyricum/genética , Colitis/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Colon , MicroARNs/genética , Antiinflamatorios , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad
10.
Front Neurosci ; 17: 1146644, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152597

RESUMEN

Objectives: Magnetic susceptibility changes in brain MRI of Wilson's disease (WD) patients have been described in subcortical nuclei especially the basal ganglia. The objectives of this study were to investigate its relationship with other microstructural and functional alterations of the subcortical nuclei and the diagnostic utility of these MRI-related metrics. Methods: A total of 22 WD patients and 20 healthy controls (HCs) underwent 3.0T multimodal MRI scanning. Susceptibility, volume, diffusion microstructural indices and whole-brain functional connectivity of the putamen (PU), globus pallidus (GP), caudate nucleus (CN), and thalamus (TH) were analyzed. Receiver operating curve (ROC) was applied to evaluate the diagnostic value of the imaging data. Correlation analysis was performed to explore the connection between susceptibility change and microstructure and functional impairment of WD and screen for neuroimaging biomarkers of disease severity. Results: Wilson's disease patients demonstrated increased susceptibility in the PU, GP, and TH, and widespread atrophy and microstructural impairments in the PU, GP, CN, and TH. Functional connectivity decreased within the basal ganglia and increased between the PU and cortex. The ROC model showed higher diagnostic value of isotropic volume fraction (ISOVF, in the neurite orientation dispersion and density imaging model) compared with susceptibility. Severity of neurological symptoms was correlated with volume and ISOVF. Susceptibility was positively correlated with ISOVF in GP. Conclusion: Microstructural impairment of the basal ganglia is related to excessive metal accumulation in WD. Brain atrophy and microstructural impairments are useful neuroimaging biomarkers for the neurological impairment of WD.

11.
Microbiol Spectr ; 11(3): e0002323, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37166318

RESUMEN

To date, studies on the swine gut microbiome have focused almost exclusively on bacteria. Despite recent advances in the understanding of the swine gut bacteriome at different growth stages, a comprehensive longitudinal study of the lifetime dynamics of the swine gut virome is lacking. Here, we used metagenomic sequencing combined with bioinformatic analysis techniques to characterize the gut viromes of parental-generation and offspring pigs at different biological classification levels. We collected 54 fecal samples from 36 parental-generation pigs (18 breeding boars [Duroc] and 18 pregnant/lactating sows [Landrace]) and 108 fecal samples from 18 offspring pigs during the lactation (day 3), nursery (days 26, 35, and 49), growing (day 120), and finishing (day 180) stages. Alpha diversity, including community richness (richness index) and diversity (Shannon index), showed an overall increasing trend in offspring pigs. Distinct shifts (beta diversity) in the microbiome structure along different growth stages were observed. The linear discriminant analysis effect size (LEfSe) algorithm revealed 53 viral genus that are stage specific. Host prediction results showed that enteric viruses are probably correlated with carbohydrate decomposition. We identified abundant auxiliary carbohydrate-active enzyme (CAZyme) genes from enteric viruses, most of which are glycoside hydrolase genes and participate in the biolysis of complex polysaccharides. IMPORTANCE This study shows that distinct stage-associated swine gut viromes may be determined by age and/or gut physiology at different growth stages, and enteric viruses probably manipulate carbohydrate decomposition by abundant glycoside hydrolases. These findings fill a gap in the longitudinal pattern of the swine gut virome and lay the foundation for research on the function of swine enteric viruses.


Asunto(s)
Infecciones por Enterovirus , Viroma , Embarazo , Porcinos , Animales , Masculino , Femenino , Estudios Longitudinales , Lactancia , Heces/microbiología , Bacterias/genética
12.
Nutrients ; 15(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37049457

RESUMEN

Neonatal diarrhea is one of the most severe diseases in human beings and pigs, leading to high mortality and growth faltering. Gut microbiome-related studies mostly focus on the relationship between bacteria and neonatal diarrhea onset, and no research study has investigated the role of the gut virome in neonatal diarrhea. Here, using metagenomic sequencing, we characterized the fecal viral community of diarrheal and healthy neonatal piglets. We found that the viral community of diarrheal piglets showed higher individual heterogeneity and elevated abundance of Myoviridae. By predicting the bacterial host of the identified viral genomes, phages infecting Proteobacteria, especially E. coli, were the dominant taxa in neonatal diarrheal piglets. Consistent with this, the antibiotic resistance gene of E. coli origin was also enriched in neonatal diarrheal piglets. Finally, we established a random forest model to accurately discriminate between neonatal diarrheal piglets and healthy controls and identified genus E. coli- and genus listeria-infecting bacteriophages, including psa and C5 viruses, as key biomarkers. In conclusion, we provide the first glance of viral community and function characteristics in diarrheal and healthy neonatal piglets. These findings expand our understanding of the relationship among phages, bacteria and diarrhea, and may facilitate the development of therapeutics for the prevention and treatment of neonatal diarrhea.


Asunto(s)
Bacteriófagos , Escherichia coli , Animales , Porcinos , Recién Nacido , Humanos , Bacteriófagos/genética , Diarrea/veterinaria , Diarrea/microbiología , Bacterias , Heces/microbiología
13.
Front Aging Neurosci ; 15: 1174022, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37077502

RESUMEN

[This corrects the article DOI: 10.3389/fnagi.2023.1047017.].

14.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 35(2): 201-205, 2023 Feb.
Artículo en Chino | MEDLINE | ID: mdl-36916382

RESUMEN

OBJECTIVE: To summarize the management experience of helicopter medical transport in patients with critical heart disease, so as to provide reference for transport of patients with critical heart disease under the background of major natural disasters. METHODS: The clinical and transport data of 36 critically ill cardiac patients in Fuwai Central China Cardiovascular Hospital from 16:30 on July 21 to 19:30 on July 22, 2021 due to historically rare heavy rainstorms were collected. All 36 critically ill cardiac patients were transported by helicopter. The safe transportation was implemented under the measures of quickly forming a transport leadership and coordination group, clarifying responsibilities and division of labor, doing a good job in the pretreatment of the patient's condition, pipeline assessment and mechanical circulation support (MCS) equipment, simulating and practicing the transfer process, improving the safety of the transfer implementation process, and effectively handing over with the target hospital. The gender, age, disease type, MCS, transport and outcome of patients were collected. RESULTS: Thirty-six patients with cardiac critical illness were from adult extracardiac intensive care unit (ICU), adult cardiac care unit (CCU), children's CCU, comprehensive ICU and department of neurology. There were 24 males and 12 females; age (50.93±20.86) years old. There were 12 patients using respirator, 7 patients needing MCS, 2 of whom needed both extracorporeal membrane oxygenation (ECMO) and intra-aortic balloon pump (IABP), and 7 patients with post-cardiac surgery. The total distance of transportation of 36 patients was 1 638.4 km, the transit time was 10.5 hours, one way flight time of helicopter was about 8 minutes, and the average transport time per patient was about 17.5 minutes. The vital signs of 36 patients during transport were basically stable, without complications, and all of them reached the target hospital safely. CONCLUSIONS: Under the seamless connection of the rapid establishment of the transfer leadership coordination group, assessment of the patient's condition and pretreatment, the simulation of the transfer process, and the effective handover with the receiving hospital, the use of helicopter for medical transport for critically ill heart patients is feasible and safe, which can buy valuable time for saving patients' lives and further treatment.


Asunto(s)
Enfermedad Crítica , Cardiopatías , Masculino , Adulto , Niño , Femenino , Humanos , Persona de Mediana Edad , Anciano , Cardiopatías/terapia , Transporte de Pacientes , Corazón , Aeronaves , Estudios Retrospectivos
15.
J Commun Healthc ; 16(1): 83-92, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36919810

RESUMEN

BACKGROUND: This study examined how different health organizations (i.e., the Chinese CDC, the Korean CDC, the United States CDC, and WHO) communicated about the COVID-19 pandemic on social media, thus providing implications for organizations touse social media effectively in global health crises in the future. METHODS: Three bilingual researchers conducted a content analysis ofsocial media posts (N = 1,343) of these health organizations on Twitter and Sina Weibo to explore the frames of the COVID-19 pandemic, the purposes, and the strategies to communicate about it. RESULTS: Prevention was the dominant frame of the social media content of these four health organizations. Information update was the major communication purpose for WHO, the United States CDC, and the Korean CDC; however, guidance was the primary communication purpose for the Chinese CDC. The United States CDC, the Chinese CDC, and the Korean CDC heavily relied on multiple social media strategies (i.e., visual, hyperlink, and authority quotation) in their communication to the public about the COVID-19 pandemic, whereas WHO primarily employed quoting authorities. Significantdifferences were revealed across these health organizations in frames, communication purposes, and strategies. Theoretical and practical implications and limitations were discussed. CONCLUSIONS: This study examined how different global health organizations communicate about the COVID-19 pandemic on social media. We discussed how and why these global health organizations communicate the COVID-19 pandemic, which would help health-related organizations design messages strategically on global public health issues in the future.


Asunto(s)
COVID-19 , Medios de Comunicación Sociales , Humanos , Estados Unidos/epidemiología , COVID-19/epidemiología , SARS-CoV-2 , Pandemias/prevención & control , Comunicación
16.
Front Aging Neurosci ; 15: 1034376, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875695

RESUMEN

Background and objectives: The Movement Disorder Society's Unified Parkinson's Disease Rating Scale Part III (MDS-UPDRS III) is mostly common used for assessing the motor symptoms of Parkinson's disease (PD). In remote circumstances, vision-based techniques have many strengths over wearable sensors. However, rigidity (item 3.3) and postural stability (item 3.12) in the MDS-UPDRS III cannot be assessed remotely since participants need to be touched by a trained examiner during testing. We developed the four scoring models of rigidity of the neck, rigidity of the lower extremities, rigidity of the upper extremities, and postural stability based on features extracted from other available and touchless motions. Methods: The red, green, and blue (RGB) computer vision algorithm and machine learning were combined with other available motions from the MDS-UPDRS III evaluation. A total of 104 patients with PD were split into a train set (89 individuals) and a test set (15 individuals). The light gradient boosting machine (LightGBM) multiclassification model was trained. Weighted kappa (k), absolute accuracy (ACC ± 0), and Spearman's correlation coefficient (rho) were used to evaluate the performance of model. Results: For model of rigidity of the upper extremities, k = 0.58 (moderate), ACC ± 0 = 0.73, and rho = 0.64 (moderate). For model of rigidity of the lower extremities, k = 0.66 (substantial), ACC ± 0 = 0.70, and rho = 0.76 (strong). For model of rigidity of the neck, k = 0.60 (moderate), ACC ± 0 = 0.73, and rho = 0.60 (moderate). For model of postural stability, k = 0.66 (substantial), ACC ± 0 = 0.73, and rho = 0.68 (moderate). Conclusion: Our study can be meaningful for remote assessments, especially when people have to maintain social distance, e.g., in situations such as the coronavirus disease-2019 (COVID-19) pandemic.

17.
Front Aging Neurosci ; 15: 1047017, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36896420

RESUMEN

Background: Parkinson's disease (PD) is a neurodegenerative disease with a broad spectrum of motor and non-motor symptoms. The great heterogeneity of clinical symptoms, biomarkers, and neuroimaging and lack of reliable progression markers present a significant challenge in predicting disease progression and prognoses. Methods: We propose a new approach to disease progression analysis based on the mapper algorithm, a tool from topological data analysis. In this paper, we apply this method to the data from the Parkinson's Progression Markers Initiative (PPMI). We then construct a Markov chain on the mapper output graphs. Results: The resulting progression model yields a quantitative comparison of patients' disease progression under different usage of medications. We also obtain an algorithm to predict patients' UPDRS III scores. Conclusions: By using mapper algorithm and routinely gathered clinical assessments, we developed a new dynamic models to predict the following year's motor progression in the early stage of PD. The use of this model can predict motor evaluations at the individual level, assisting clinicians to adjust intervention strategy for each patient and identifying at-risk patients for future disease-modifying therapy clinical trials.

18.
Mov Disord ; 38(5): 764-773, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36797645

RESUMEN

BACKGROUND: Pathogenic variants in the glucocerebrosidase gene (GBA) have been identified as the most common genetic risk factor for Parkinson's disease (PD). However, the features of substantia nigra damage in GBA pathogenic variant carriers remain unclear. OBJECTIVE: We aimed to evaluate the microstructural changes in the substantia nigra in non-manifesting GBA pathogenic variant carriers (GBA-NMC) and PD patients with GBA pathogenic variant (GBA-PD) with free-water imaging. METHODS: First, we compared free water values in the posterior substantia nigra between non-manifesting non-carriers (NMNC, n = 29), GBA-NMC (n = 26), and GBA-PD (n = 16). Then, free water values in the posterior substantia nigra were compared between GBA-PD and early- (n = 19) and late-onset (n = 40) idiopathic PD (iPD) patients. Furthermore, we examined whether the baseline free water values could predict the progressions of clinical symptoms. RESULTS: The free water values in the posterior substantia nigra were significantly higher in the GBA-NMC and GBA-PD groups compared to NMNC, and were significantly increased in the GBA-PD group than both early- and late-onset iPD. Free water values in the posterior substantia nigra could predict the progression of anxiety and cognitive decline in GBA-NMC and GBA-PD groups. CONCLUSIONS: We demonstrate that free water values are elevated in the substantia nigra and predict the development of non-motor symptoms in GBA-NMC and GBA-PD. Our findings demonstrate that a significant nigral impairment already exists in GBA-NMC, and nigral injury may be more severe in GBA-PD than in iPD. These results support that free-water imaging can as a potential early marker of substantia nigra damage. © 2023 International Parkinson and Movement Disorder Society.


Asunto(s)
Glucosilceramidasa , Enfermedad de Parkinson , Humanos , Glucosilceramidasa/genética , Sustancia Negra/diagnóstico por imagen , Sustancia Negra/patología , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Heterocigoto , Agua , Mutación
19.
Gut Microbes ; 14(1): 2128604, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36176029

RESUMEN

Inflammatory bowel disease (IBD) is a global disease with no cure. Disruption of the microbial ecosystem is considered to be an important cause of IBD. Extracellular vesicles (EVs) are vital participants in cell-cell and cell-organism communication. Both host-derived EVs and bacteria-derived membrane vesicles (OMVs) contribute to homeostasis in the intestine. However, the roles of EVs-miRNAs and MVs in host-microbe interactions in colitis remain unclear. In the present study, the animal model of colitis was established by dextran sulfate sodium (DSS) to investigate the changes of miRNAs in colonic EVs from colitis. Several miRNAs were significantly altered in colitis EVs. miR-181b-5p transplantation inhibited M1 macrophage polarization and promoted M2 polarization to reduce the levels of inflammation both in acute and remission of chronic colitis. miR-200b-3p could interact with bacteria and regulate the composition of the microbiota, which contributed to intestinal barrier integrity and homeostasis. Notably, MVs from normal feces could effectively reverse the composition of the intestinal microbiota, restore the intestinal barrier and rescue colitis, and BMVs from colitis would also have similar effects after miR-200b-3p treatment. Our results preliminarily identify a vesicle-based host-microbe interaction cycle in colitis and provide new ideas for colitis treatment.


Asunto(s)
Colitis , Vesículas Extracelulares , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , MicroARNs , Microbiota , Animales , Bacterias/genética , Colitis/inducido químicamente , Colitis/microbiología , Sulfato de Dextran , Modelos Animales de Enfermedad , Intestinos , MicroARNs/genética
20.
Front Nutr ; 9: 921758, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845805

RESUMEN

High fructose corn syrup (HFCS) is a viscous mixture of glucose and fructose that is used primarily as a food additive. This article explored the effect of HFCS on lipid metabolism-expressed genes and the mouse gut microbiome. In total, ten 3-week-old male C57BL/6J mice were randomly divided into two groups, including the control group, given purified water (Group C) and 30% HFCS in water (Group H) for 16 weeks. Liver and colonic content were collected for transcriptome sequencing and 16S rRNA gene sequencing, respectively. HFCS significantly increased body weight, epididymal, perirenal fat weight in mice (p < 0.05), and the proportion of lipid droplets in liver tissue. The expression of the ELOVL fatty acid elongase 3 (Elovl3) gene was reduced, while Stearoyl-Coenzyme A desaturase 1 (Scd1), peroxisome proliferator activated receptor gamma (Pparg), fatty acid desaturase 2 (Fads2), acyl-CoA thioesterase 2 (Acot2), acyl-CoA thioesterase 2 (Acot3), acyl-CoA thioesterase 4 (Acot4), and fatty acid binding protein 2 (Fabp2) was increased in Group H. Compared with Group C, the abundance of Firmicutes was decreased in Group H, while the abundance of Bacteroidetes was increased, and the ratio of Firmicutes/Bacteroidetes was obviously decreased. At the genus level, the relative abundance of Bifidobacterium, Lactobacillus, Faecalibaculum, Erysipelatoclostridium, and Parasutterella was increased in Group H, whereas that of Staphylococcus, Peptococcus, Parabacteroides, Donghicola, and Turicibacter was reduced in Group H. Pparg, Acot2, Acot3, and Scd1 were positively correlated with Erysipelatoclostridium and negatively correlated with Parabacteroides, Staphylococcus, and Turicibacter. Bifidobacterium was negatively correlated with Elovl3. Overall, HFCS affects body lipid metabolism by affecting the expression of lipid metabolism genes in the liver through the gut microbiome.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA