Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Environ Sci Technol ; 58(17): 7516-7528, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38629947

RESUMEN

Field observations of daytime HONO source strengths have not been well explained by laboratory measurements and model predictions up until now. More efforts are urgently needed to fill the knowledge gaps concerning how environmental factors, especially relative humidity (RH), affect particulate nitrate photolysis. In this work, two critical attributes for atmospheric particles, i.e., phase state and bulk-phase acidity, both influenced by ambient RH, were focused to illuminate the key regulators for reactive nitrogen production from typical internally mixed systems, i.e., NaNO3 and dicarboxylic acid (DCA) mixtures. The dissolution of only few oxalic acid (OA) crystals resulted in a remarkable 50-fold increase in HONO production compared to pure nitrate photolysis at 85% RH. Furthermore, the HONO production rates (PHONO) increased by about 1 order of magnitude as RH rose from <5% to 95%, initially exhibiting an almost linear dependence on the amount of surface absorbed water and subsequently showing a substantial increase in PHONO once nitrate deliquescence occurred at approximately 75% RH. NaNO3/malonic acid (MA) and NaNO3/succinic acid (SA) mixtures exhibited similar phase state effects on the photochemical HONO production. These results offer a new perspective on how aerosol physicochemical properties influence particulate nitrate photolysis in the atmosphere.


Asunto(s)
Nitratos , Fotólisis , Nitratos/química , Ácidos Dicarboxílicos/química , Ácido Nitroso/química , Humedad , Malonatos/química , Contaminantes Atmosféricos/química
2.
J Environ Sci (China) ; 127: 320-327, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36522064

RESUMEN

The high NO3- concentration in fine particulate matters (PM2.5) during heavy haze events has attracted much attention, but the formation mechanism of nitrates remains largely uncertain, especially concerning heterogeneous uptake of NOX by aqueous phase. In this work, the heterogeneous uptake of NO2 by sodium acetate (NaAc) droplets with different NO2 concentrations and relative humidity (RH) conditions is investigated by microscopic Fourier transform infrared spectrometer (micro-FTIR). The IR feature changes of aqueous droplets indicate the acetate depletion and nitrite formation in humid environment. This implies that acetate droplets can provide the alkaline aqueous circumstances caused by acetate hydrolysis and acetic acid (HAc) volatilization for nitrite formation during the NO2 heterogeneous uptake. Meanwhile, the nitrite formation will exhibit a pH neutralizing effect on acetate hydrolysis, further facilitating HAc volatilization and acetate depletion. The heterogeneous uptake coefficient increases from 5.2 × 10-6 to 1.27 × 10-5 as RH decreases from 90% to 60% due to the enhanced HAc volatilization. Furthermore, no obvious change in uptake coefficient with different NO2 concentrations is observed. This work may provide a new pathway for atmospheric nitrogen cycling and secondary nitrite aerosol formation.


Asunto(s)
Nitritos , Dióxido de Nitrógeno , Acetato de Sodio , Aerosoles/análisis , Material Particulado , Agua
3.
Nat Commun ; 13(1): 4265, 2022 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-35871266

RESUMEN

Upland rice is a distinct ecotype that grows in aerobic environments and tolerates drought stress. However, the genetic basis of its drought resistance is unclear. Here, using an integrative approach combining a genome-wide association study with analyses of introgression lines and transcriptomic profiles, we identify a gene, DROUGHT1 (DROT1), encoding a COBRA-like protein that confers drought resistance in rice. DROT1 is specifically expressed in vascular bundles and is directly repressed by ERF3 and activated by ERF71, both drought-responsive transcription factors. DROT1 improves drought resistance by adjusting cell wall structure by increasing cellulose content and maintaining cellulose crystallinity. A C-to-T single-nucleotide variation in the promoter increases DROT1 expression and drought resistance in upland rice. The potential elite haplotype of DROT1 in upland rice could originate in wild rice (O. rufipogon) and may be beneficial for breeding upland rice varieties.


Asunto(s)
Oryza , Celulosa/metabolismo , Sequías , Estudio de Asociación del Genoma Completo , Oryza/genética , Oryza/metabolismo , Fitomejoramiento
4.
Waste Manag ; 148: 98-105, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35667240

RESUMEN

Pretreatment is the initial stage of lignocellulosic biorefinery process, but is limited by the time-consuming processes, harsh conditions and/or undesirable products. Herein, a mild (<60 °C) and highly efficient pretreatment strategy is developed. The novel mechanocatalytical reaction system driven by fluid shear force helps to exfoliate cellulose from lignocellulose, and the heat generated by the shear process can be used to precipitate and recover the dissolved cellulose from the precooled NaOH/urea solution. The regenerated cellulose shows satisfying crystal structure (cellulose II), significantly decreased crystallinity and nearly tripled enzymolysis glucose yield. Almost 90% of lignin and hemicellulose could be rapidly separated. The separated lignin shows a nearly native structure with 64% ß-O-4 linkage, which is even higher than the ball-milling lignin (60%). This research provides a theoretical guidance for the mild pretreatment of lignocellulosic biomass, which will push the application of mechanocatalytical reaction system in biorefinery processes on a large scale.


Asunto(s)
Celulosa , Lignina , Biomasa , Celulosa/química , Hidrodinámica , Hidrólisis , Lignina/química
5.
Bioresour Technol ; 344(Pt B): 126177, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34699963

RESUMEN

The development of biogas projects feed by lignocellulosic biomass has been constrained by the high cost of pre- and post-treatment. In this study, a novel strategy for pretreatment by using two by-products, i.e., CO2 and liquid digestate (LD), generated from anaerobic digestion (AD) was developed to overcome these shortcomings. Results showed that corn straw pretreated in LD pressurized under 1 Mpa CO2 at 55 â„ƒ resulted in increased glucose and xylose contents and a 9.80% decrease in cellulose crystallinity. After 45 days of AD conversion, the methane yield increased by 50.97% compared with untreated straw. However, pretreatment in LD pressurized under 1 Mpa CO2 at 170 â„ƒ produced 5-hydroxymethylfurfural and furfural, which led to a decrease in methane production from the straw in the subsequent AD conversion. The alteration of the microbial community in the pretreated slurry at 55 °C was another potential contributor to the enhanced performance of AD.


Asunto(s)
Biocombustibles , Zea mays , Anaerobiosis , Biomasa , Lignina/metabolismo , Metano , Zea mays/metabolismo
6.
Chemosphere ; 286(Pt 2): 131705, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34333185

RESUMEN

With regard to the treatment of multicomponent wastewaters, to construct multifunctional super-wetting membranes is highly attractive in current decade. In this work, a low-cost and novel NiFe2O4/TA/PVDF composite membrane was fabricated via a facile in-situ deposition method under vacuum system. In which, photo-response NiFe2O4 nanoparticles were immobilized on the surface of flexible PVDF base membrane via hydrophilic tannic acid (TA) as the binder. The resulting composite membrane exhibited a special superwettability of superamphilicity in air and underwater superoleophobicity with a nanoscale rough surface structure. One the one hand, NiFe2O4/TA/PVDF membrane can be used a reusable catalyst in Photo-Fenton degradation of organic dyes with high efficiency. On the other hand, the composite membrane can effectively separate emulsified oils from representative oil-in-water emulsions with excellent separation efficiency all above 99 % and relatively high flux (880-1525 Lm-2h-1 bar-1). More importantly, NiFe2O4/TA/PVDF composite membrane showed satisfactory processing efficiency, anti-fouling property and excellent reusability in deal with the mixed organic pollutants (water-insoluble emulsified oils and water-soluble organic dyes) existed in one aqueous system, which followed the procedure of initially photo-Fenton degradation of organic dyes emulsion and successively separation the remaining emulsion over the recovered membrane. This successful development of high-performance NiFe2O4/TA/PVDF composite membrane will provide a new candidate for both oil/water separation and organic wastewater treatment, as well as promote the utilization of spinel ferrites in the construction of multifunctional membrane for environmental purification.


Asunto(s)
Contaminantes Ambientales , Membranas Artificiales , Polivinilos , Taninos
7.
Appl Biochem Biotechnol ; 193(12): 3996-4017, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34661867

RESUMEN

To develop an efficient photofermentative process capable of higher rate biohydrogen production using carbon components of lignocellulosic hydrolysate, a desired carbon substrate by mixing xylose with glucose was formulated. Effects of crucial process parameters affecting cellular biochemical reaction of hydrogen by photosynthetic bacteria (PSB), i.e., variation in initial concentration of total carbon, glucose content in initial carbon substrate, and light intensity, were experimentally investigated using response surface methodology (RSM) with a Box-Behnken design (BBD). Hydrogen production rate (HPR) in the maximum value of 30.6 mL h-1 L-1 was attained under conditions of 39 mM initial concentration of total carbon, 59% (mol/mol) glucose content in initial carbon substrate, and 12.6 W m-2 light intensity at light wavelength of 590 nm. Synergic effects of metabolizing such a well-formulated carbon substrate for sustaining the active microbial synthesis to sufficiently accumulate biomass in bioreactor, as well as stimulating enzyme activity of nitrogenase for the higher rate biohydrogen production, were attributed to this carbon substrate that can enable PSB to maintain the relatively consistent microenvironment in suitable culture pH condition during the optimized photofermentative process.


Asunto(s)
Glucosa/metabolismo , Hidrógeno/metabolismo , Fotosíntesis , Rhodopseudomonas/crecimiento & desarrollo , Xilosa/metabolismo , Glucosa/farmacología , Xilosa/farmacología
8.
ACS Omega ; 6(27): 17228-17238, 2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34278109

RESUMEN

The release of antibiotics into the water environment can pose a serious threat to human and ecological health, so it is of great significance to effectively remove antibiotics from wastewater. In this work, porphyrinic zirconium metal-organic framework material, PCN-224, was first explored for the adsorption removal of antibiotics from water using tetracycline (TC) and ciprofloxacin (CIP) as examples. We prepared a series of PCN-224 with different particle sizes (150 nm, 300 nm, 500 nm, and 6 µm). Benefiting from the huge surface area (1616 m2 g-1), the 300 nm-PCN-224 sample had the best adsorption properties for TC and CIP. Remarkably, it exhibits fast removal rates and high adsorption capacities of 354.81 and 207.16 mg g-1 for TC and CIP, respectively. The adsorption of TC and CIP in 300 nm-PCN-224 is consistent with the pseudo-second-order kinetic model and Langmuir isotherm model, which indicates that the adsorption can be regarded as homogeneous monolayer chemisorption, and the adsorption is exothermic, which has been confirmed by thermodynamic studies. Under visible-light irradiation, 300 nm-PCN-224 exhibited high photocatalytic activity for TC and CIP. The adsorption studies confirmed that the adsorption of adsorbates takes place via the formation of hydrogen bonding, π-π interactions, and electrostatic attraction. In addition, the adsorbent can be simply regenerated by photocatalysis under visible light, and the adsorption-desorption efficiency is still above 85% after repeated use five times. The work of MOFs to remove antibiotics from water shows that MOFs have great potential in this field and are worthy of further study.

9.
Med Sci Monit ; 27: e932337, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33762561

RESUMEN

Retracted, due to breach of publishing guidelines, following the identification of non-original content. Reference: Mukonal Inhibits Cell Proliferation, Alters Mitochondrial Membrane Potential and Induces Apoptosis and Autophagy in Human CNE1 Nasopharyngeal Carcinoma Cells Yingyuan Guo, Yanru Hao, Guofang Guan, Shuaishuai Ma, Zhiling Zhu, Fang Guo, Jie Bai Med Sci Monit 2019; 25:1976-1983 10.12659/MSM.913915.

10.
Chemosphere ; 277: 130320, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33773310

RESUMEN

The efflorescence transitions of aerosol particles have been intensively investigated due to their critical impacts on global climate and atmospheric chemistry. In the present study, we present a critical review of efflorescence kinetics focusing on three key issues: the efflorescence relative humidity (ERH) and the influence factors for aerosol ERH (e.g. particle sizes, and temperature); efflorescence processes of mixed aerosols, concerning the effect of coexisting inorganic and organic components on the efflorescence of inorganic salts; homogeneous and heterogeneous nucleation rates of pure and mixed aerosols. Among the previous studies, there are significant discrepancies for measured aerosol ERH under even the same conditions. Moreover, the interactions between organic and inorganic components remain largely unclear, causing efflorescence transition behaviours and chemical composition evolutions of certain mixed systems to be debatable. Thus, it is important to better understand efflorescence to gain insights into the physicochemical properties and characterize observed efflorescence characteristics of atmospheric particles, as well as guide further studies on aerosol hygroscopicity and reactivity.


Asunto(s)
Cinética , Aerosoles , Humedad , Tamaño de la Partícula , Humectabilidad
11.
Chemosphere ; 264(Pt 2): 128507, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33045506

RESUMEN

The deliquescence behavior of atmospheric aerosols has significant effects on global climate and atmospheric heterogeneous chemistry but remains largely unclear. The deliquescence kinetics data of micron-sized particles are scarce owing to the difficulty on performing the time-resolved dissolution measurements. In view of this technique bottleneck, an applicable and powerful experimental technique, i. e., vacuum FTIR combining pulsed relative humidity (RH) change technique, is introduced for gaining deliquescence kinetics information of three inorganic salts. For NaCl and (NH4)2SO4 aerosols, a solid-liquid mixing state derived from partial dissolution of NaCl and (NH4)2SO4 crystals is present during deliquescence, and the recrystallization will occur once RH decreases. While for NaNO3 particles, the recrystallization cannot occur as RH decreases owing to the formed amorphous NaNO3 solids after dying. The dissolution rates of NaCl, (NH4)2SO4 and NaNO3 solid particles are calculated, as a first attempt, by the upward pulsed RH mode. The measured rates show a significant dependency on ambient RH with three orders of magnitude. For NaCl particles, the measured J values range from 1.41 × 10-4 to 7.67 × 10-1 s-1 at RH of 73.41-75.15%. The J for (NH4)2SO4 particles is 7.34 × 10-3 to 2.46 × 100 s-1 over the RH range of 77.27%-80.13%. The J values for amorphous NaNO3 solids range from 6.01 × 10-3 to 2.63 × 100 s-1 as RH increases from 71.15% to 73.84%. Our results fill in the dataset of atmospheric models describing the kinetics features of deliquescence and provide an insight into dynamic solid-solution transition for PM2.5 particles.


Asunto(s)
Cloruro de Sodio , Aerosoles , Cinética , Solubilidad , Vacio
12.
Sci Total Environ ; 751: 141660, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-32889458

RESUMEN

A new NiAlFe layered double hydroxide/polydopamine/polyvinylidene fluoride (NiAlFe LDH/PDA/PVDF) membrane was fabricated by in-situ growth of LDH on the PDA modified PVDF membrane. The as-prepared membrane possesses a nano/microscale rough structural surface and displays the superior wettability of superhydrophilicity in air and underwater superoleophobicity. Combining the favourable features of superwettability and hierarchical rough structure, the NiAlFe LDH/PDA/PVDF membrane could effectively separate a series of oil-in-water emulsions with high efficiency (>99%) and high permeation flux (925-1913 L m-2 h-1 bar-1). Besides, owing to the light harvest ability of NiAlFe LDH, the relevant membrane also can be applied as a photocatalysis paper for the light-driven treatment of antibiotic residue in aqueous solution. In which, NiAlFe LDH/PDA/PVDF membrane can effectively degrade typical antibiotic tetracycline within 20 min under UV light irradiation, exhibiting excellent photocatalytic activity. In addition, cyclic experiments demonstrate that NiAlFe LDH/PDA/PVDF membrane has excellent stability and reusability both in oil-in-water emulsion separation and photocatalytic reaction. In general, the findings of this research demonstrate that photo-response LDH modified membranes have potential multiple applications in wastewater treatment.


Asunto(s)
Purificación del Agua , Antibacterianos , Interacciones Hidrofóbicas e Hidrofílicas , Membranas Artificiales , Aguas Residuales
13.
ACS Omega ; 5(48): 30980-30988, 2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33324806

RESUMEN

A ternary photocatalyst, Fe3O4-loaded g-C3N4/C-layered composite (g-C3N4/C/Fe3O4) was fabricated by a facile sonication and in situ precipitation technique. Carbon nanosheets were prepared using the remaining non-metallic components of waste printed circuit boards as carbon sources. In this hybrid structure, g-C3N4 was immobilized on the surfaces of carbon nanosheets to form a layered composite, and 10-15 nm Fe3O4 nanoparticles are uniformly deposited on the surface of the composite material. The photocatalytic performance of the catalyst was studied by degrading tetracycline (TC) under simulated sunlight. The results showed that the photoactivity of the g-C3N4/C/Fe3O4 composite to TC was significantly enhanced, and the degradation rate was 10.07 times higher than that of pure g-C3N4, which was attributed to Fe3O4 nanoparticles and carbon nanosheets. Carbon sheets with good conductivity are an excellent electron transporter, which promotes the separation of photogenerated carriers and the Fe3O4 nanoparticles can utilize electrons effectively as a center of oxidation-reduction. Moreover, a possible photocatalytic mechanism for the excellent photocatalytic performance was proposed.

14.
J Phys Chem A ; 124(51): 10870-10878, 2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33320676

RESUMEN

The hygroscopic behaviors and phase changes of inorganic aerosols have been widely explored, but little is known on the hygroscopicity of soluble carbonates. The hydrated states of solid Na2CO3 particles in an air environment remain largely unclear. In this work, the hygroscopic growth, hydrated form transformations, and influence of internal Li2CO3 on phase transitions of Na2CO3 particles are investigated in linear and pulsed relative humidity (RH) changing modes by the vacuum Fourier transform infrared (FTIR) technique. For pure Na2CO3, aqueous droplets effloresced to a mixture of anhydrous Na2CO3 and Na2CO3·H2O with the initial efflorescence relative humidity (ERH) of 50.8%, probably concerning the formation of Na2CO3·10H2O in the conversion from aqueous to anhydrous Na2CO3. A reverse process is presented during the three-stage deliquescence transition beginning at ∼60.1% RH; i.e., anhydrous Na2CO3 transforms into aqueous Na2CO3 and Na2CO3·10H2O in stage I, Na2CO3·10H2O dissolves to aqueous Na2CO3 in stage II, and Na2CO3·H2O dissolves into aqueous Na2CO3 in stage III. For internally mixed Na2CO3/Li2CO3 particles, a double salt, LiNaCO3, is found in mixed crystalline phases for the first time, leading to the eutonic composition with Na2CO3. The experimental observations point to the excess of LiNaCO3 and complete consumption of Na2CO3 in eutonic composition formation, which results in the absence of Na2CO3 hydrates during phase transitions. The results provide key data for model simulations of hygroscopic properties and phase transitions of Na2CO3 as well as mixed soluble carbonates.

15.
ACS Omega ; 5(43): 28037-28045, 2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33163786

RESUMEN

In this study, three-dimensional (3D) Bi2MoO6 microspheres were successfully fabricated by a facile, rapid, and mild microwave solvothermal strategy for the first time. The resultant 3D Bi2MoO6 microspheres exhibited superior adsorption capacity and photocatalytic efficiency in the degradation of the representative antibiotic ciprofloxacin under visible light, for which the reaction kinetic rate constant is 7.5 times as high as that of the as-synthesized zero-dimensional Bi2MoO6 nanoparticles. The 3D hierarchical porous structure and the high Brunauer-Emmett-Teller surface area providing abundant reactive sites mainly contributed to the enhanced photocatalytic activity. The results highlight the feasibility of 3D Bi2MoO6 microspheres as an efficient visible-light-responsive photocatalyst for antibiotic removal in an aqueous system.

16.
Photochem Photobiol Sci ; 19(12): 1697-1706, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33215628

RESUMEN

Oxygen vacancies (OVs) defects in metal oxide-based photocatalysts play a crucial role in improving the charge carrier separation efficiencies to enhance the photocatalytic performances. In this work, OVs were introduced in 3D Bi2MoO6 microspheres through a facile and fast microwave-assisted method via the modulation of tetramethylethylenediamine (TMEDA). EPR, Raman and XPS results demonstrated that large amounts of oxygen vacancies were formed on the surface of BMO microspheres. The photocatalytic properties of the samples were studied by degradation of tetracycline (TC) under visible light. The optimal Bi2MoO6 with OVs exhibited optimum photocatalytic activity, and the degradation rate was 7.0 times higher than that of pristine Bi2MoO6. This enhancement can be attributed to the 3D structure furnishing more surface active sites and suitable OVs defects favoring the electron-hole separation. Moreover, the defective Bi2MoO6 microspheres exhibit high stability because the photocatalytic activity remains almost unchanged after 5 cycles, making them favorable for practical applications. Finally, a possible visible light photocatalysis mechanism for the degradation of TC was tentatively proposed.

17.
J Contam Hydrol ; 235: 103712, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32942141

RESUMEN

The soil gas concentration attenuation in lateral diffusive transport determines the influence area of a contamination plume in soil vapor intrusion, a major exposure pathway of volatile chemicals at contaminated sites. In this study, we utilize both physical and mathematical models to investigate the roles of soil geology heterogeneities and impermeable surface pavements in determining the attenuation of contaminant soil gas concentration. The results indicate that the attenuation of soil gas concentration with lateral diffusion is observed to be the most significant if with a low-permeability soil layer at the bottom and a high-permeability layer on top, followed by the cases with the uniform soil properties, and the lateral attenuation is the least significant in cases with a high-permeability soil layer at the bottom and a low-permeability soil layer on top, regardless of the surface coverage. Compared to soil heterogeneity, the influences of surface conditions are less significant, and the capping effect of surface cover can only play a role in determining shallow soil gas concentration profiles. At last, the physical experimental results were used to examine a previously developed analytical vapor intrusion model including the influences of layering and surface conditions.


Asunto(s)
Contaminantes del Suelo , Suelo , Gases , Modelos Teóricos , Contaminantes del Suelo/análisis , Volatilización
18.
Huan Jing Ke Xue ; 41(2): 609-619, 2020 Feb 08.
Artículo en Chino | MEDLINE | ID: mdl-32608719

RESUMEN

To investigate the chemical composition and pollution characteristics of spring fine particles (PM2.5) in Changzhou, a total of 84 PM2.5 samples were collected from March 1st to May 30th, 2017. We measured and analyzed conventional components, such as water-soluble ions (WSIIs) and carbonaceous components (OC and EC). The water-soluble organic aerosol (WSOA) was also analyzed by an aerodyne soot particle aerosol mass spectrometer (SP-AMS). During the sampling period, the average daily PM2.5 concentration was 101.97 µg·m-3, with more than 73.8% sampling days exceeding the Target-2 standard of the national ambient air quality standard of China. The air quality during the sampling period was dominated by light, moderate, and heavy pollution, accounting for 39.3%, 21.4%, and 13.1% of the total days, respectively. The total WSIIs accounted for 39.86% of PM2.5 mass, of which secondary ions (SO42-, NH4+, and NO3-) accounted for 81.85% of the total WSIIs. The slope of the linear fitted line of the anion and cation charge balance (AE/CE) was greater than 1 (1.09), which indicated that PM2.5 was weakly acidic. The average OC/EC ratio was 2.53, indicating that PM2.5 was influenced by the secondary conversion. WSOA included CxHy+(32.1%), CxHyO+(30.4%), CxHyO2+(25.4%), and HyO+(4.7%) identified by SP-AMS. The average oxygen-to-carbon (O/C), hydrogen-to-carbon (H/C), nitrogen-to-carbon (N/C), and organic matter-to-organic carbon (OM/OC) ratios of the WSOA were 0.72, 1.53, 0.04, and 2.15, respectively. Higher O/C indicated higher contributions from secondary photochemical reaction conversion in spring. Positive matrix factorization (PMF) analysis for AMS mass spectra of WSOA identified three sources, namely hydrocarbon-like (HOA), semi-volatile oxygenated OA (SVOOA)-biomass burning OA (BBOA), and low-volatility oxygenated OA (LVOOA), which on average accounted for 18.4%, 34.1%, and 47.4% of the total WSOA, respectively.

19.
Sci Total Environ ; 723: 137953, 2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32213404

RESUMEN

In this study, we investigated aqueous-phase triplet excited states (3C⁎)-induced photo-degradation of 4-ethylguaiacol (EG) under both simulated sunlight and ultraviolet (UV) light irradiations. Through quencher experiments, the relative contributions of reactive oxygen species (ROS, such as 1O2/O2-/·OH) and 3C⁎ were calculated and results showed three reactive species, e.g., 3C⁎, 1O2 and O2-, all seemed to play important roles in the photo-degradation of EG, but contribution from ·OH was relatively minor. High steady-state 1O2 concentration after 1 h irradiation further revealed the major contribution of 1O2 to photo-degradation under Xe light irradiation. The degradation experiment under three saturated gases (air, O2 and N2) showed that the degradation rate in air-saturated condition was the largest owing to synergistic effect of 1O2 and 3C⁎. Oxidative capacity of aqueous secondary organic aerosol (aqSOA) increased with reaction time by monitoring oxygen-to­carbon (O/C) ratio and carbon oxidation state (OSc) via an aerodyne soot particle aerosol mass spectrometer (SP-AMS). Moreover, aqSOA mass yields were calculated via SP-AMS data. The UV-vis spectral change suggested formation of light-absorbing organics at first stage under simulated sunlight irradiation. Based on the identified products and the reactive intermediates, we postulated that 3C⁎-induced oxidation might be attributed to direct reactions by 3C⁎ and 1O2, chemical reaction by ROS, as well as oligomerization via H-abstraction. To the best of our knowledge, this is the first time to explore systematically reaction pathways of 4-ethylguaiacol under 3C∗ radical on the basis of thorough analysis of products and reactive species. Our findings highlight the impacts of aqSOA from biomass burning emissions on air quality and climate change.

20.
Huan Jing Ke Xue ; 41(1): 146-154, 2020 Jan 08.
Artículo en Chino | MEDLINE | ID: mdl-31854915

RESUMEN

Aqueous-phase chemical processing, as an essential formation pathway of secondary organic aerosol (SOA), has attracted widespread attention from within atmospheric chemistry fields. Due to the complicated reaction nature, reaction mechanisms, and product characteristics of aqueous-phase chemical processing, its contribution to the SOA budget is still not fully understood. In this work, we investigate how the initial concentration (0.03-3 mmol·L-1) of 4-ethylguaiacol affects SOA formation of aqueous·OH photochemical oxidation. We use soot-particle aerosol mass spectrometry (SP-AMS) to monitor SOA mass yield and oxidation character, and gas chromatography-mass spectrometry (GC-MS) and ion chromatography (IC) to measure products and organic acids. Additionally, we use ultraviolet visible spectroscopy (UV-vis) and high-performance liquid spectrometry (HPLS) to track the formation of light-absorbing products such as humic-like substances (HULIS). Our research indicated that the range of the O/C ratio of EG-aqSOA measured by the SP-AMS exhibited increasing trends with increased reaction time 0.42-0.61 (0.03 mmol·L-1), 0.49-0.84 (0.3 mmol·L-1), and 0.49-0.63 (3 mmol·L-1). Dimers (C16H18 O2+, m/z 302) via SP-AMS were obviously higher under a higher initial concentration, thereby demonstrating that the oligomerization reaction proceeded more easily. The absorption at 250 nm recorded by UV-vis was distinctly enhanced, which might be attributed to new light-absorbing products with absorbance at 250 nm. Furthermore, the HULIS concentration increased with reaction time, in accordance with enhancement of absorbance in the 300-400 nm region, thus suggesting that aqueous-phase processing formed brown carbon. Small organic acids, including formic acid, malic acid, and oxalic acid, were detected by IC in all reaction solutions, with the highest concentration being for formic acid. GC/MS detected ketone, an OH monomer, and dimers in the aqSOA, which further indicates that functionalization and oligomerization took place.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA