Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
1.
Cell Signal ; : 111235, 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38806109

RESUMEN

In this study, we investigated the molecular mechanisms underlying the impact of extracellular vesicles (EVs) derived from bone marrow stromal cells (BMSCs) on colorectal cancer (CRC) development. The focus was on the role of MAGI2-AS3, delivered by BMSC-EVs, in regulating USP6NL DNA methylation-mediated MYC protein translation modification to promote CDK2 downregulation. Utilizing bioinformatics analysis, we identified significant enrichment of MAGI2-AS3 related to copper-induced cell death in CRC. In vitro experiments demonstrated the downregulation of MAGI2-AS3 in CRC cells, and BMSC-EVs were found to deliver MAGI2-AS3 to inhibit CRC cell proliferation, migration, and invasion. Further exploration revealed that MAGI2-AS3 suppressed MYC protein translation modification by regulating USP6NL DNA methylation, leading to CDK2 downregulation and prevention of colorectal cancer. Overexpression of MYC reversed the functional effects of BMSC-EVs-MAGI2-AS3. In vivo experiments validated the inhibitory impact of BMSC-EVs-MAGI2-AS3 on CRC tumorigenicity by promoting CDK2 downregulation through USP6NL DNA methylation-mediated MYC protein translation modification. Overall, BMSC-EVs-MAGI2-AS3 may serve as a potential intervention to prevent CRC occurrence by modulating key molecular pathways.

2.
Biochem Pharmacol ; 225: 116306, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38782076

RESUMEN

Fibroblast growth factor 21 (FGF21) has promise for treating diabetes and its associated comorbidities. It has been found to reduce blood glucose in mice and humans; however, its underlying mechanism is not known. Here, the metabolic function of FGF21 in diabetes was investigated. Diabetic db/db mice received intraperitoneal injections of FGF21 for 28 days, the serum of each mouse was collected, and their metabolites were analyzed by untargeted metabolomics using UHPLC-MS/MS. It was found that FGF21 reduced blood glucose and oral glucose tolerance without causing hypoglycemia. Moreover, administration of FGF21 reduced the levels of TG and LDL levels while increasing those of HDL and adiponectin. Importantly, the levels of 45 metabolites, including amino acids and lipids, were significantly altered, suggesting their potential as biomarkers. We speculated that FGF21 may treat T2DM through the regulation of fatty acid biosynthesis, the TCA cycle, and vitamin digestion and absorption. These findings provide insight into the mechanism of FGF21 in diabetes and suggest its potential for treating diabetes.

3.
Cell Stem Cell ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38692273

RESUMEN

Nephron progenitor cells (NPCs) self-renew and differentiate into nephrons, the functional units of the kidney. Here, manipulation of p38 and YAP activity allowed for long-term clonal expansion of primary mouse and human NPCs and induced NPCs (iNPCs) from human pluripotent stem cells (hPSCs). Molecular analyses demonstrated that cultured iNPCs closely resemble primary human NPCs. iNPCs generated nephron organoids with minimal off-target cell types and enhanced maturation of podocytes relative to published human kidney organoid protocols. Surprisingly, the NPC culture medium uncovered plasticity in human podocyte programs, enabling podocyte reprogramming to an NPC-like state. Scalability and ease of genome editing facilitated genome-wide CRISPR screening in NPC culture, uncovering genes associated with kidney development and disease. Further, NPC-directed modeling of autosomal-dominant polycystic kidney disease (ADPKD) identified a small-molecule inhibitor of cystogenesis. These findings highlight a broad application for the reported iNPC platform in the study of kidney development, disease, plasticity, and regeneration.

4.
Proc Natl Acad Sci U S A ; 121(20): e2322321121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38728226

RESUMEN

Multispecies bacterial populations often inhabit confined and densely packed environments where spatial competition determines the ecological diversity of the community. However, the role of mechanical interactions in shaping the ecology is still poorly understood. Here, we study a model system consisting of two populations of nonmotile Escherichia coli bacteria competing within open, monolayer microchannels. The competitive dynamics is observed to be biphasic: After seeding, either one strain rapidly fixates or both strains orient into spatially stratified, stable communities. We find that mechanical interactions with other cells and local spatial constraints influence the resulting community ecology in unexpected ways, severely limiting the overall diversity of the communities while simultaneously allowing for the establishment of stable, heterogeneous populations of bacteria displaying disparate growth rates. Surprisingly, the populations have a high probability of coexisting even when one strain has a significant growth advantage. A more coccus morphology is shown to provide a selective advantage, but agent-based simulations indicate this is due to hydrodynamic and adhesion effects within the microchannel and not from breaking of the nematic ordering. Our observations are qualitatively reproduced by a simple Pólya urn model, which suggests the generality of our findings for confined population dynamics and highlights the importance of early colonization conditions on the resulting diversity and ecology of bacterial communities. These results provide fundamental insights into the determinants of community diversity in dense confined ecosystems where spatial exclusion is central to competition as in organized biofilms or intestinal crypts.


Asunto(s)
Escherichia coli , Escherichia coli/fisiología , Modelos Biológicos , Biodiversidad , Ecosistema
5.
Adv Mater ; : e2404172, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38734973

RESUMEN

Aqueous aluminum ion batteries (AAIBs) hold significant potential for grid-scale energy storage owing to their intrinsic safety, high theoretical capacity, and abundance of aluminum. However, the strong electrostatic interactions and delayed charge compensation between high-charge-density aluminum ions and the fixed lattice in conventional cathodes impede the development of high-performance AAIBs. To address this issue, this work introduces, for the first time, high-entropy Prussian blue analogs (HEPBAs) as cathodes in AAIBs with unique lattice tolerance and efficient multipath electron transfer. Benefiting from the intrinsic long-range disorder and robust lattice strain field, HEPBAs enable the manifestation of the lattice respiration effect and minimize lattice volume changes, thereby achieving one of the best long-term stabilities (91.2% capacity retention after 10 000 cycles at 5.0 A g-1) in AAIBs. Additionally, the interaction between the diverse metal atoms generates a broadened d-band and reduced degeneracy compared with conventional Prussian blue and its analogs (PBAs), which enhances the electron transfer efficiency with one of the best rate performance (79.2 mAh g-1 at 5.0 A g-1) in AAIBs. Furthermore, exceptional element selectivity in HEPBAs with unique cocktail effect can facile tune electrochemical behavior. Overall, the newly developed HEPBAs with a high-entropy effect exhibit promising solutions for advancing AAIBs and multivalent-ion batteries.

6.
Water Res ; 257: 121715, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38728779

RESUMEN

High-valent metal-oxo species (HMOS) have been extensively recognized in advanced oxidation processes (AOPs) owing to their high selectivity and high chemical utilization efficiency. However, the interactions between HMOS and halide ions in sewage wastewater are complicated, leading to ongoing debates on the intrinsic reactive species and impacts on remediation. Herein, we prepared three typical HMOS, including Fe(IV), Mn(V)-nitrilotriacetic acid complex (Mn(V)NTA) and Co(IV) through peroxymonosulfate (PMS) activation and comparatively studied their interactions with Cl- to reveal different reactive chlorine species (RCS) and the effects of HMOS types on RCS generation pathways. Our results show that the presence of Cl- alters the cleavage behavior of the peroxide OO bond in PMS and prohibits the generation of Fe(IV), spontaneously promoting SO4•- production and its subsequent transformation to secondary radicals like Cl• and Cl2•-. The generation and oxidation capacity of Mn(V)NTA was scarcely influenced by Cl-, while Cl- would substantially consume Co(IV) and promote HOCl generation through an oxygen-transfer reaction, evidenced by density functional theory (DFT) and deuterium oxide solvent exchange experiment. The two-electron-transfer standard redox potentials of Fe(IV), Mn(V)NTA and Co(IV) were calculated as 2.43, 2.55 and 2.85 V, respectively. Due to the different reactive species and pathways in the presence of Cl-, the amounts of chlorinated by-products followed the order of Co(II)/PMS > Fe(II)/PMS > Mn(II)NTA/PMS. Thus, this work renovates the knowledge of halide chemistry in HMOS-based systems and sheds light on the impact on the treatment of salinity-containing wastewater.


Asunto(s)
Oxidación-Reducción , Cloruros/química , Cloro/química , Metales/química , Halogenación , Contaminantes Químicos del Agua/química , Aguas Residuales/química
7.
J Breast Cancer ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38769687

RESUMEN

PURPOSE: During the major shift in China's policies on coronavirus disease 2019 (COVID-19), many residents will be infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) over a short period, including a few patients with breast cancer undergoing neoadjuvant chemotherapy (NAC). Moreover, it is unknown whether this comorbidity affects the efficacy of NAC for breast cancer and the patient's psychological state and quality of life (QOL). This study aims to answer these questions. METHODS: The clinical data of 2,793 patients with breast cancer who received NAC at The Affiliated Hospital of Qingdao University were retrospectively collected. The infected and non-infected groups were divided according to whether they were infected with COVID-19 during NAC. Propensity score matching was used to reduce patient selection bias. The effectiveness, psychological well-being, and QOL of the two groups were compared. RESULTS: No discernible differences were observed in the pathological complete response rates (p = 0.307) and major histological responses rate (p = 0.398) between the infected and non-infected groups. Following the full course of NAC, the Functional Assessment of Cancer Treatment General (p < 0.001) and Functional Assessment of Cancer Therapy for Breast Cancer (p < 0.001) were lower in the infected group than the non-infected group, the Hospital Anxiety and Depression Scale (HADS) anxiety scale (p < 0.001) and HADS depression scale (p < 0.001) were considerably higher in the infected group than the non-infected group. CONCLUSION: With timely treatment and effective medical management, SARS-CoV-2 does not appear to affect the efficacy of NAC; however, it can significantly affect the QOL of patients and increase their psychological distress. Therefore, in addition to a timely assessment of the efficacy of NAC, it is necessary to dynamically understand the patient's psychological state and QOL.

8.
Small ; : e2401849, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38682728

RESUMEN

Manganese dioxide (MnO2) materials have recently garnered attention as prospective high-capacity cathodes, owing to their theoretical two-electron redox reaction in charge storage processes. However, their practical application in aqueous energy storage systems faces a formidable challenge: the disproportionation of Mn3+ ions, leading to a significant reduction in their capacity. To address this limitation, the study presents a novel graphitic carbon interlayer-engineered manganese oxide (CI-MnOx) characterized by an open structure and abundant defects. This innovative material serves several essential functions for efficient aqueous energy storage. First, a graphitic carbon layer coats the MnOx molecular interlayer, effectively inhibiting Mn3+ disproportionation and substantially enhancing electrode conductivity. Second, the phase variation within MnOx generates numerous crystal defects, vacancies, and active sites, optimizing electron-transfer capability. Third, the flexible carbon layer acts as a buffer, mitigating the volume expansion of MnOx during extended cycling. The synergistic effects of these features result in the CI-MnOx exhibiting an impressive high capacity of 272 mAh g-1 (1224 F g-1) at 0.25 A g-1. Notably, the CI-MnOx demonstrates zero capacity loss after 90 000 cycles (≈3011 h), an uncommon longevity for manganese oxide materials. Spectral characterizations reveal reversible cation intercalation and conversion reactions with multielectron transfer in a LiCl electrolyte.

10.
Adv Mater ; : e2401568, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38682861

RESUMEN

The development of high-performance electrocatalysts for energy conversion reactions is crucial for advancing global energy sustainability. The design of catalysts based on their electronic properties (e.g., work function) has gained significant attention recently. Although numerous reviews on electrocatalysis have been provided, no such reports on work function-guided electrocatalyst design are available. Herein, a comprehensive summary of the latest advancements in work function-guided electrocatalyst design for diverse electrochemical energy applications is provided. This includes the development of work function-based catalytic activity descriptors, and the design of both monolithic and heterostructural catalysts. The measurement of work function is first discussed and the applications of work function-based catalytic activity descriptors for various reactions are fully analyzed. Subsequently, the work function-regulated material-electrolyte interfacial electron transfer (IET) is employed for monolithic catalyst design, and methods for regulating the work function and optimizing the catalytic performance of catalysts are discussed. In addition, key strategies for tuning the work function-governed material-material IET in heterostructural catalyst design are examined. Finally, perspectives on work function determination, work function-based activity descriptors, and catalyst design are put forward to guide future research. This work paves the way to the work function-guided rational design of efficient electrocatalysts for sustainable energy applications.

11.
ACS Omega ; 9(12): 13592-13602, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38559948

RESUMEN

This work presents a novel porous activated carbon electrode based on quinoa straw (QSC), which is derived from the Qinghai-Tibet Plateau. The QSC is prepared through simple precarbonization and potassium carbonate (K2CO3) activation processes and is intended for use in supercapacitors. The QSC-3 exhibits a high specific capacitance of 469.5 F g-1 at a current density of 0.5 A g-1, as well as a high specific surface area of 1802 m2 g-1. Additionally, symmetrical supercapacitors assembled using QSC-3 samples demonstrate a superior energy power density. In a 3 M KOH electrolyte, the energy density can reach 15.0 Wh kg-1 at a power density of 689.7 W kg-1. In a 1 M Na2SO4 electrolyte, the power density reaches 999.00 W kg-1, and the energy density is 39.68 Wh kg-1. Furthermore, the device shows excellent cycle life in both 3 M KOH and 1 M Na2SO4 electrolytes, with capacitance retentions of 97.55% and 96.20% after 10 000 cycles, respectively. This study provides an excellent example of utilizing waste quinoa straw to achieve low-cost, high-performance supercapacitor electrode material for sustainable electrochemical energy storage systems.

12.
Materials (Basel) ; 17(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38611984

RESUMEN

The cavitation effect is an important geochemical phenomenon, which generally exists under strong hydrodynamic conditions. Therefore, developing an economical and effective sonocatalyst becomes a vital method in capitalizing on the cavitation effect for energy generation. In this study, we first report a novel Fe3O4 sonocatalyst that can be easily separated using a magnetic field and does not require any additional cocatalysts for H2 production from H2O. When subjected to ultrasonic vibration, this catalyst achieves an impressive H2 production rate of up to 175 µmol/h/USD (where USD stands for dollars), surpassing most previously reported mechanical catalytic materials. Furthermore, the ease and efficiency of separating this catalyst using an external magnetic field, coupled with its effortless recovery, highlight its significant potential for practical applications. By addressing the key limitations of conventional sonocatalysts, our study not only demonstrates the feasibility of using Fe3O4 as a highly efficient sonocatalyst but also showcases the exciting possibility of using a new class of magnetically separable sonocatalysts to productively transform mechanical energy into chemical energy.

13.
Behav Ther ; 55(3): 621-635, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38670673

RESUMEN

This pilot feasibility study examined the effects of a new trauma-informed parenting program, Family Life Skills Triple P (FLSTP), in an open uncontrolled trial conducted in a regular service delivery context via video conferencing. FLSTP was trialed as a group-delivered 10-session intervention. Program modules target positive parenting skills (4 sessions) and adult life skills including coping with emotions, taking care of relationships, self-care, dealing with the past, healthy living, and planning for the future. Participants were 50 parents with multiple vulnerabilities, due to social disadvantage or adverse childhood experiences, who had children aged 3-9 with early onset behavior problems. Outcomes were assessed across four data collection points: baseline, mid-intervention (after Session 4), post-intervention, and 3-month follow up. Findings show moderate to large intra-group effect sizes for changes in child behavior problems, parenting practices and risk of child maltreatment, and medium effect sizes for parental distress, emotion regulation and self-compassion. Parents and practitioners reported high levels of consumer satisfaction with the program. Parents with lower levels of parental self-efficacy, lower personal agency and higher baseline scores on a measure of child abuse potential were at greater risk of not completing the program. The strength of these preliminary findings indicates that a more rigorous evaluation using a randomized clinical trial is warranted.


Asunto(s)
Estudios de Factibilidad , Responsabilidad Parental , Humanos , Femenino , Masculino , Niño , Responsabilidad Parental/psicología , Adulto , Preescolar , Proyectos Piloto , Adaptación Psicológica , Padres/psicología , Experiencias Adversas de la Infancia/psicología , Terapia Familiar/métodos , Persona de Mediana Edad , Maltrato a los Niños/psicología , Familia/psicología
14.
Adv Sci (Weinh) ; : e2310115, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38491872

RESUMEN

In this work, 2D ferromagnetic M3 GeTe2 (MGT, M = Ni/Fe) nanosheets with rich atomic Te vacancies (2D-MGTv ) are demonstrated as efficient OER electrocatalyst via a general mechanical exfoliation strategy. X-ray absorption spectra (XAS) and scanning transmission electron microscope (STEM) results validate the dominant presence of metal-O moieties and rich Te vacancies, respectively. The formed Te vacancies are active for the adsorption of OH* and O* species while the metal-O moieties promote the O* and OOH* adsorption, contributing synergistically to the faster oxygen evolution kinetics. Consequently, 2D-Ni3 GeTe2v exhibits superior OER activity with only 370 mV overpotential to reach the current density of 100 mA cm-2 and turnover frequency (TOF) value of 101.6 s-1 at the overpotential of 200 mV in alkaline media. Furthermore, a 2D-Ni3 GeTe2v -based anion-exchange membrane (AEM) water electrolysis cell (1 cm2 ) delivers a current density of 1.02 and 1.32 A cm-2 at the voltage of 3 V feeding with 0.1 and 1 m KOH solution, respectively. The demonstrated metal-O coordination with abundant atomic vacancies for ferromagnetic M3 GeTe2 and the easily extended preparation strategy would enlighten the rational design and fabrication of other ferromagnetic materials for wider electrocatalytic applications.

15.
Materials (Basel) ; 17(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38541570

RESUMEN

Aqueous supercapacitors have occupied a significant position among various types of stationary energy storage equipment, while their widespread application is hindered by the relatively low energy density. Herein, N/F co-doped carbon materials activated by manganese clusters (NCM) are constructed by the straightforward experimental routine. Benefiting from the elevated conductivity structure at the microscopic level, the optimized NCM-0.5 electrodes exhibited a remarkable specific capacitance of 653 F g-1 at 0.4 A g-1 and exceptional cycling stability (97.39% capacity retention even after 40,000 cycles at the scanning rate of 100 mV s-1) in a neutral 5 M LiCl electrolyte. Moreover, we assembled an asymmetric device pairing with a VOx anode (NCM-0.5//VOx), which delivered a durable life span of 95% capacity retention over 30,000 cycles and an impressive energy density of 77.9 Wh kg-1. This study provides inspiration for transition metal element doping engineering in high-energy storage equipment.

16.
ACS Appl Mater Interfaces ; 16(12): 14965-14973, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38489479

RESUMEN

Electrochemical reduction of CO2 to highly valuable products is a promising way to reduce CO2 emissions. The shape and facets of metal nanocatalysts are the key parameters in determining the catalytic performance. However, the exposed crystal facets of ZnO with different morphologies and which facets achieve a high performance for CO2 reduction are still controversial. Here, we systematically investigate the effect of the facet-dependent reactivity of reduction of CO2 to CO on ZnO (nanowire, nanosheet, and flower-like). The ZnO nanosheet with exposed (110) facet exhibited prominent catalytic performance with a Faradaic efficiency of CO up to 84% and a current density of -10 mA cm-2 at -1.2 V versus RHE, far outperforming the ZnO nanowire (101) and ZnO nanoflower (103). Based on detailed characterizations and kinetic analysis, the ZnO nanosheet (110) with porous architecture increased the exposure of active sites. Further studies revealed that the high CO selectivity originated from the enhancement of CO2 adsorption and activation on the ZnO (110) facet, which promoted the conversion of CO2 toward CO. This study provides a new way to tailor the activity and selectivity of metal catalysts by engineering exposed specific facets.

17.
Angew Chem Int Ed Engl ; 63(21): e202315802, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38453646

RESUMEN

The development of nonpyrolytic catalysts featuring precisely defined active sites represents an effective strategy for investigating the fundamental relationship between the catalytic activity of oxygen reduction reaction (ORR) catalysts and their local coordination environments. In this study, we have synthesized a series of model electrocatalysts with well-defined CoN4 centers and nonplanar symmetric coordination structures. These catalysts were prepared by a sequential process involving the chelation of cobalt salts and 1,10-phenanthroline-based ligands with various substituent groups (phen(X), where X=OH, CH3, H, Br, Cl) onto covalent triazine frameworks (CTFs). By modulating the electron-donating or electron-withdrawing properties of the substituent groups on the phen-based ligands, the electron density surrounding the CoN4 centers was effectively controlled. Our results demonstrated a direct correlation between the catalytic activity of the CoN4 centers and the electron-donating ability of the substituent group on the phenanthroline ligands. Notably, the catalyst denoted as BCTF-Co-phen(OH), featuring the electron-donating OH group, exhibited the highest ORR catalytic activity. This custom-crafted catalyst achieved a remarkable half-wave potential of up to 0.80 V vs. RHE and an impressive turnover frequency (TOF) value of 47.4×10-3 Hz at 0.80 V vs. RHE in an alkaline environment.

18.
J Sch Psychol ; 103: 101296, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432724

RESUMEN

High-quality teacher-child relationships and parent-teacher communications have substantial benefits to children's well-being and school functioning. However, more research is needed to understand how parenting self-efficacy influences these relationships. This cross-sequential study investigated the direct associations of parenting self-efficacy with the teacher-child relationship and parent-teacher communication, as well as potential mediation pathways. The present study included a sample of 8152 children who participated in the Longitudinal Study of Australian Children (LSAC), a large study with a nationally representative sample of children from two cohorts who were 4 years apart. We used data collected in three waves when participating children were ages 6 years, 8 years, and 10 years. Structural equation modeling was used to test a panel model with parent-reported parenting self-efficacy and parent-teacher communication quality, as well as teacher-reported teacher-child relationship, child behavior difficulties, and child prosocial behaviors at school. Cross-lagged regressions demonstrated that baseline parenting self-efficacy directly and positively linked with the quality of teacher-child relationship and parent-teacher communication 2 years later. Child behavior at school was identified as a mediation pathway between parenting self-efficacy and teacher-child relationship. The same patterns were identified in two waves (Waves 6-8 and Waves 8-10). Limited child gender, parent gender, or cohort differences were observed. The current findings provide initial support that parenting self-efficacy may have spillover effects on school-related factors. The findings have implications both for parenting and school researchers and for child mental health practitioners because one important way to promote parenting self-efficacy is through evidence-based parenting programs.


Asunto(s)
Comunicación , Relaciones Interpersonales , Responsabilidad Parental , Humanos , Australia , Estudios Longitudinales , Padres , Autoeficacia , Maestros , Niño
19.
Nature ; 627(8005): 783-788, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38538937

RESUMEN

Controlling the intensity of emitted light and charge current is the basis of transferring and processing information1. By contrast, robust information storage and magnetic random-access memories are implemented using the spin of the carrier and the associated magnetization in ferromagnets2. The missing link between the respective disciplines of photonics, electronics and spintronics is to modulate the circular polarization of the emitted light, rather than its intensity, by electrically controlled magnetization. Here we demonstrate that this missing link is established at room temperature and zero applied magnetic field in light-emitting diodes2-7, through the transfer of angular momentum between photons, electrons and ferromagnets. With spin-orbit torque8-11, a charge current generates also a spin current to electrically switch the magnetization. This switching determines the spin orientation of injected carriers into semiconductors, in which the transfer of angular momentum from the electron spin to photon controls the circular polarization of the emitted light2. The spin-photon conversion with the nonvolatile control of magnetization opens paths to seamlessly integrate information transfer, processing and storage. Our results provide substantial advances towards electrically controlled ultrafast modulation of circular polarization and spin injection with magnetization dynamics for the next-generation information and communication technology12, including space-light data transfer. The same operating principle in scaled-down structures or using two-dimensional materials will enable transformative opportunities for quantum information processing with spin-controlled single-photon sources, as well as for implementing spin-dependent time-resolved spectroscopies.

20.
J Cancer Res Clin Oncol ; 150(3): 124, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38478111

RESUMEN

BACKGROUND: Cancer-associated fibroblasts (CAF) play a critical role in promoting tumor growth, metastasis, and immune evasion. While numerous studies have investigated CAF, there remains a paucity of research on their clinical application in colorectal cancer (CRC). METHODS: In this study, we collected differentially expressed genes between CAF and normal fibroblasts (NF) from previous CRC studies, and utilized machine learning analysis to differentiate two distinct subtypes of CAF in CRC. To enable practical application, a CAF-related genes (CAFGs) scoring system was developed based on multivariate Cox regression. We then conducted functional enrichment analysis, Kaplan-Meier plot, consensus molecular subtypes (CMS) classification, and Tumor Immune Dysfunction and Exclusion (TIDE) algorithm to investigate the relationship between the CAFGs scoring system and various biological mechanisms, prognostic value, tumor microenvironment, and response to immune checkpoint blockade (ICB) therapy. Moreover, single-cell transcriptomics and proteomics analyses have been employed to validate the significance of scoring system-related molecules in the identity and function of CAF. RESULTS: We unveiled significant distinctions in tumor immune status and prognosis not only between the CAF clusters, but also across high and low CAFGs groups. Specifically, patients in CAF cluster 2 or with high CAFGs scores exhibited higher CAF markers and were enriched for CAF-related biological pathways such as epithelial-mesenchymal transition (EMT) and angiogenesis. In addition, CAFGs score was identified as a risk index and correlated with poor overall survival (OS), progression-free survival (PFS), disease-free survival (DFS), and recurrence-free survival (RFS). High CAFGs scores were observed in patients with advanced stages, CMS4, as well as lymphatic invasion. Furthermore, elevated CAFG scores in patients signified a suppressive tumor microenvironment characterized by the upregulation of programmed death-ligand 1 (PD-L1), T-cell dysfunction, exclusion, and TIDE score. And high CAFGs scores can differentiate patients with lower response rates and poor prognosis under ICB therapy. Notably, single-cell transcriptomics and proteomics analyses identified several molecules related to CAF identity and function, such as FSTL1, IGFBP7, and FBN1. CONCLUSION: We constructed a robust CAFGs score system with clinical significance using multiple CRC cohorts. In addition, we identified several molecules related to CAF identity and function that could be potential intervention targets for CRC patients.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Colorrectales , Proteínas Relacionadas con la Folistatina , Humanos , Multiómica , Fibroblastos , Algoritmos , Neoplasias Colorrectales/genética , Microambiente Tumoral/genética , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA