Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38826399

RESUMEN

Recent findings in our lab demonstrated that the risk of cocaine relapse is closely linked to the hyperexcitability of cortical pyramidal neurons in the secondary motor cortex (M2), noticeable 45 days after cocaine intravenous self-administration (IVSA). The present study was designed to explore the underlying mechanisms of neuronal alterations in M2. Our hypothesis was that M2 neurons were affected directly by cocaine taking behaviors. This hypothesis was tested by monitoring individual neuronal activity in M2 using MiniScopes for in vivo Ca 2+ imaging in C57BL/6J mice when they had access to cocaine IVSA as a reinforcement (RNF) contingent to active lever press (ALP) but not to inactive lever press (ILP). With support of our established pipeline to processing Ca 2+ imaging data, the current study was designed to monitor M2 neuronal ensembles at the single-neuron level in real time with high temporal resolution and high throughput in each IVSA session and longitudinally among multiple IVSA sessions. Specifically, five consecutive 1-hr daily IVSA sessions were used to model the initial cocaine taking behaviors. Besides detailed analyses of IVSA events (ALP, ILP, and RNF), the data from Ca 2+ imaging recordings in M2 were analyzed by (1) comparing neuronal activation within a daily IVSA session (i.e., the first vs. the last 15 min) and between different daily sessions (i.e., the first vs. the last IVSA day), (2) associating Ca 2+ transients with individual IVSA events, and (3) correlating Ca 2+ transients with the cumulative effects of IVSA events. Our data demonstrated that M2 neurons are exquisitely sensitive to and significantly affected by concurrent operant behaviors and the history of drug exposure, which in turn sculpt the upcoming operant behaviors and the response to drugs. As critical nodes of the reward loop, M2 neurons appear to be the governing center orchestrating the establishment of addiction-like behaviors.

2.
Cells ; 13(1)2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-38201293

RESUMEN

High levels of alcohol intake alter brain gene expression and can produce long-lasting effects. FK506-binding protein 51 (FKBP51) encoded by Fkbp5 is a physical and cellular stress response gene and has been associated with alcohol consumption and withdrawal severity. Fkbp5 has been previously linked to neurite outgrowth and hippocampal morphology, sex differences in stress response, and epigenetic modification. Presently, primary cultured Fkbp5 KO and WT mouse neurons were examined for neurite outgrowth and mitochondrial signal with and without alcohol. We found neurite specification differences between KO and WT; particularly, mesh-like morphology was observed after alcohol treatment and confirmed higher MitoTracker signal in cultured neurons of Fkbp5 KO compared to WT at both naive and alcohol-treated conditions. Brain regions that express FKBP51 protein were identified, and hippocampus was confirmed to possess a high level of expression. RNA-seq profiling was performed using the hippocampus of naïve or alcohol-injected (2 mg EtOH/Kg) male and female Fkbp5 KO and WT mice. Differentially expressed genes (DEGs) were identified between Fkbp5 KO and WT at baseline and following alcohol treatment, with female comparisons possessing a higher number of DEGs than male comparisons. Pathway analysis suggested that genes affecting calcium signaling, lipid metabolism, and axon guidance were differentially expressed at naïve condition between KO and WT. Alcohol treatment significantly affected pathways and enzymes involved in biosynthesis (Keto, serine, and glycine) and signaling (dopamine and insulin receptor), and neuroprotective role. Functions related to cell morphology, cell-to-cell signaling, lipid metabolism, injury response, and post-translational modification were significantly altered due to alcohol. In summary, Fkbp5 plays a critical role in the response to acute alcohol treatment by altering metabolism and signaling-related genes.


Asunto(s)
Trastornos Relacionados con Alcohol , Etanol , Femenino , Masculino , Animales , Ratones , Etanol/farmacología , Metabolismo de los Lípidos , Inyecciones , Consumo de Bebidas Alcohólicas , Glicina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA