Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
J Ethnopharmacol ; 333: 118465, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-38944360

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cistanche deserticola is a kind of parasitic plant living in the roots of desert trees. It is a rare Chinese medicine, which has the effect of tonifying kidney Yang, benefiting essence and blood and moistening the intestinal tract. Cistache deserticola phenylethanoid glycoside (PGS), an active component found in Cistanche deserticola Ma, have potential kidney tonifying, intellectual enhancing, and neuroprotective effects. Cistanche total glycoside capsule has been marketed to treat vascular dementia disease. AIM OF THE STUDY: To identify the potential renal, intellectual enhancing and neuroprotective effects of PGS and explore the exact targets and mechanisms of PGS. MATERIALS AND METHODS: This study systematically investigated the four types of pathways leading to ferroptosis through transcriptome, metabolome, ultrastructure and molecular biology techniques and explored the molecular mechanism by which multiple PGS targets and pathways synergistically exert neuroprotective effects on hypoxia. RESULTS: PGS alleviated learning and memory dysfunction and pathological injury in mice exposed to hypobaric hypoxia by attenuating hypobaric hypoxia-induced hippocampal histopathological damage, impairing blood‒brain barrier integrity, increasing oxidative stress levels, and increasing the expression of cognitive proteins. PGS reduced the formation of lipid peroxides and improved ferroptosis by upregulating the GPX-4/SCL7A311 axis and downregulating the ACSL4/LPCAT3/LOX axis. PGS also reduced ferroptosis by facilitating cellular Fe2+ efflux and regulating mitochondrial Fe2+ transport and effectively antagonized cell ferroptosis induced by erastin (a ferroptosis inducer). CONCLUSIONS: This study demonstrated the mechanism by which PGS prevents hypobaric hypoxic nerve injury through four types of ferroptosis pathways, achieved neuroprotective effects and alleviated learning and memory dysfunction in hypobaric hypoxia mice. This study provides a theoretical basis for the development and application of PGS.


Asunto(s)
Cistanche , Ferroptosis , Glicósidos , Fármacos Neuroprotectores , Animales , Ferroptosis/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/aislamiento & purificación , Cistanche/química , Ratones , Glicósidos/farmacología , Glicósidos/aislamiento & purificación , Masculino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Hipoxia/tratamiento farmacológico , Hipoxia/metabolismo , Trastornos de la Memoria/tratamiento farmacológico
2.
J Ethnopharmacol ; 326: 117967, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38431111

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Psoraleae Fructus (PF), the dried fruit of Psoralea corylifolia L., is a commonly used traditional medicine that has contributed to the treatment of orthopedic diseases for thousands of years in China. However, recent PF-related liver injury reports have drawn widespread attention regarding its potential hepatotoxicity risks. AIM OF THE STUDY: This study was aimed to evaluate the long-term efficacy and chronic toxicity of PF using a 26-week administration experiment on rats in order to simulate the clinical usage situation. MATERIALS AND METHODS: The PF aqueous extract was consecutively administrated to rats daily at dosages of 0.7, 2.0, and 5.6 g/kg (equivalent to 1-8 times the clinical doses for humans) for as long as 26 weeks. Samples were collected after 13, 26, and 32 weeks (withdrawal for 6 weeks) since the first administration. The chronic toxicity of PF was evaluated by conventional toxicological methods, and the efficacy of PF was evaluated by osteogenic effects in the natural growth process. RESULTS: In our experiments, only the H group (5.6 g/kg) for 26-week PF treatment demonstrated liver or kidney injury, which the injuries were reversible after 6 weeks of withdrawal. Notably, the PF treatment beyond 13 weeks showed significant benefits for bone growth and development in rats, with a higher benefit-risk ratio in female rats. CONCLUSIONS: PF displayed a promising benefit-risk ratio in the treatment and prevention of osteoporosis, a disease that lacks effective medicine so far. This is the first study to elucidate the benefit-risk balance associated with clinical dosage and long-term use of PF, thereby providing valuable insights for rational clinical use and risk control of PF.


Asunto(s)
Medicamentos Herbarios Chinos , Fabaceae , Psoralea , Humanos , Ratas , Femenino , Animales , Frutas , Oportunidad Relativa , Hígado , Medicamentos Herbarios Chinos/toxicidad
3.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474292

RESUMEN

E0703, a new steroidal compound optimized from estradiol, significantly increased cell proliferation and the survival rate of KM mice and beagles after ionizing radiation. In this study, we characterize its preclinical pharmacokinetics (PK) and predict its human PK using a physiologically based pharmacokinetic (PBPK) model. The preclinical PK of E0703 was studied in mice and Rhesus monkeys. Asian human clearance (CL) values for E0703 were predicted from various allometric methods. The human PK profiles of E0703 (30 mg) were predicted by the PBPK model in Gastro Plus software 9.8 (SimulationsPlus, Lancaster, CA, USA). Furthermore, tissue distribution and the human PK profiles of different administration dosages and forms were predicted. The 0.002 L/h of CL and 0.005 L of Vss in mice were calculated and optimized from observed PK data. The plasma exposure of E0703 was availably predicted by the CL using the simple allometry (SA) method. The plasma concentration-time profiles of other dosages (20 and 40 mg) and two oral administrations (30 mg) were well-fitted to the observed values. In addition, the PK profile of target organs for E0703 exhibited a higher peak concentration (Cmax) and AUC than plasma. The developed E0703-PBPK model, which is precisely applicable to multiple species, benefits from further clinical development to predict PK in humans.


Asunto(s)
Protectores contra Radiación , Ratones , Humanos , Animales , Perros , Modelos Biológicos , Administración Oral , Distribución Tisular , Farmacocinética
6.
Sci Rep ; 14(1): 1696, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38242895

RESUMEN

Psoraleae Fructus (PF) is a widely-used herb with diverse pharmacological activities, while its related hepatic injuries have aroused public concerns. In this work, a systematic approach based on RNA sequencing (RNA-seq), high-content screening (HCS) and molecular docking was developed to investigate the potential mechanism and identify major phytochemicals contributed to PF-induced hepatotoxicity. Animal experiments proved oral administration of PF water extracts disturbed lipid metabolism and promoted hepatic injuries by suppressing fatty acid and cholesterol catabolism. RNA-seq combined with KEGG enrichment analysis identified mitochondrial oxidative phosphorylation (OXPHOS) as the potential key pathway. Further experiments validated PF caused mitochondrial structure damage, mtDNA depletion and inhibited expressions of genes engaged in OXPHOS. By detecting mitochondrial membrane potential and mitochondrial superoxide, HCS identified bavachin, isobavachalcone, bakuchiol and psoralidin as most potent mitotoxic compounds in PF. Moreover, molecular docking confirmed the potential binding patterns and strong binding affinity of the critical compounds with mitochondrial respiratory complex. This study unveiled the underlying mechanism and phytochemicals in PF-induced liver injuries from the view of mitochondrial dysfunction.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Medicamentos Herbarios Chinos , Psoralea , Animales , Medicamentos Herbarios Chinos/química , Simulación del Acoplamiento Molecular , Psoralea/química , RNA-Seq , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Fitoquímicos/farmacología
7.
Radiat Res ; 201(2): 126-139, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38154483

RESUMEN

Low-dose radiation has been extensively employed in clinical practice, including tumor immunotherapy, chronic inflammation treatment and nidus screening. However, the damage on the spleen caused by low-dose radiation significantly increases the risk of late infection-related mortality, and there is currently no corresponding protective strategy. In the present study, a novel compound preparation named CB001 mainly constituted of Acanthopanax senticosus (AS) and Oldenlandia diffusa (OD) was developed to alleviate splenic injury caused by fractionated low-dose exposures. As our results show that, white pulp atrophy and the excessive apoptosis in spleen tissue induced by radiation exposure were significantly ameliorated by CB001. Mechanistically, BAX-caspase-3 signaling and nucleotide-binding domain and leucine-rich-repeat-containing family pyrin 3 (NLRP3) inflammasome signaling were demonstrated to be involved in the radio-protective activity of CB001 with the selective activators. Furthermore, the crosstalk between apoptosis signaling and NLRP3 inflammasome signaling in mediating the radio-protective activity of CB001 was clarified, in which the pro-apoptotic protein BAX but not the anti-apoptotic protein Bcl2 was found to be downstream of NLRP3. Our study demonstrated that the use of a novel drug product CB001 can potentially facilitate the alleviation of radiation-induced splenic injury for patients receiving medical imaging diagnosis or fractionated radiation therapy.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Caspasa 1/metabolismo , Proteína X Asociada a bcl-2 , Bazo/metabolismo , Caspasa 3
8.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(6): 777-784, 2023 Dec 12.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38105680

RESUMEN

OBJECTIVES: To explore the effects of hypoxic and hypobaric conditions on blood gas and erythrocyte-related indicators in rats. METHODS: SD male rats were exposed to low-pressure hypoxic conditions simulating an altitude of 6500 m in a small or a large experimental cabin. Abdominal aortic blood samples were collected and blood gas indicators, red blood cells (RBCs) count, and hemoglobin (Hb) content were measured. The effects of exposure to different hypoxia times, different hypoxia modes, normal oxygen recovery after hypoxia, and re-hypoxia after hypoxia preconditioning on blood gas indicators, RBCs count and Hb content were investigated. RESULTS: The effect of blood gas indicators was correlated with the length of exposure time of hypoxia and the reoxygenation after leaving the cabin. Hypoxia caused acid-base imbalance and its severity was associated with the duration of hypoxia; hypoxia also led to an increase in RBCs count and Hb content, and the increase was also related to the time exposed to hypoxia. The effects of reoxygenation on acid-base imbalance in rats caged in a small animal cabin were more severe that those in a large experimental cabin. Acetazolamide alleviated the effects of reoxygenation after leaving the cabin. Different hypoxia modes and administration of acetazolamide had little effect on RBCs count and Hb content. Normal oxygen recovery can alleviate the reoxygenation and acid-base imbalance of hypoxic rats after leaving the cabin and improve the increase in red blood cell and hemoglobin content caused by hypoxia. The improvement of hypoxia preconditioning on post hypoxia reoxygenation is not significant, but it can alleviate the acid-base imbalance caused by hypoxia in rats and to some extent improve the increase in red blood cell and hemoglobin content caused by hypoxia. CONCLUSIONS: Due to excessive ventilation and elevated RBCs count and Hb content after hypoxia reoxygenation, oxygen partial pressure and other oxygenation indicators in hypoxic rats are prone to become abnormal, while blood gas acid-base balance indicators are relatively stable, which are more suitable for evaluating the degree of hypoxia injury and related pharmacological effects in rats.


Asunto(s)
Acetazolamida , Desequilibrio Ácido-Base , Ratas , Animales , Masculino , Hipoxia , Oxígeno , Eritrocitos , Hemoglobinas
9.
Neurosci Lett ; 801: 137163, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36868397

RESUMEN

OBJECTIVE: The aim of this study was to investigate the effect of time course on neurological impairment after acute hypobaric hypoxia exposure in mice and clarify the mechanism of acclimatization, so as to provide a suitable mice model and identify potential target against hypobaric hypoxia for further drug research. METHOD: Male C57BL/6J mice were exposed to hypobaric hypoxia at a simulated altitude of 7000 m for 1, 3, and 7 days (1HH, 3HH and 7HH respectively). The behavior of the mice was evaluated by novel object recognition (NOR) and morris water maze test (MWM), then, the pathological changes of mice brain tissues were observed by H&E and Nissl staining. In addition, RNA sequencing (RNA-Seq) was performed to characterize the transcriptome signatures, and enzyme-linked immunosorbent assay (ELISA), Real-time polymerase chain reaction (RT-PCR), and western blot (WB) were used to verify the mechanisms of neurological impairment induced by hypobaric hypoxia. RESULT: The hypobaric hypoxia condition resulted in impaired learning and memory, decreased new object cognitive index, and increased escape latency to the hidden platform in mice, with significant changes seen in the 1HH and 3HH groups. Bioinformatic analysis of RNA-seq results of hippocampal tissue showed that 739 differentially expressed genes (DEGs) appeared in the 1HH group, 452 in the 3HH group, and 183 in the 7HH group compared to the control group. There were 60 key genes overlapping in three groups which represented persistent changes and closely related biological functions and regulatory mechanisms in hypobaric hypoxia-induced brain injuries. DEGs enrichment analysis showed that hypobaric hypoxia-induced brain injuries were associated with oxidative stress, inflammatory responses, and synaptic plasticity. ELISA and WB results confirmed that these responses occurred in all hypobaric hypoxic groups while attenuated in the 7HH group. VEGF-A-Notch signaling pathway was enriched by DEGs in hypobaric hypoxia groups and was validated by RT-PCR and WB. CONCLUSION: The nervous system of mice exposed to hypobaric hypoxia exhibited stress followed by gradual habituation and thus acclimatization over time, which was reflected in the biological mechanism involving inflammation, oxidative stress, and synaptic plasticity, and accompanied by activation of the VEGF-A-Notch pathway.


Asunto(s)
Lesiones Encefálicas , Hipoxia Encefálica , Ratones , Masculino , Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Ratones Endogámicos C57BL , Hipoxia/metabolismo , Hipoxia Encefálica/metabolismo , Neuronas/metabolismo , Lesiones Encefálicas/metabolismo , Hipocampo/metabolismo
10.
Molecules ; 27(13)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35807297

RESUMEN

Aconiti Lateralis Radix Praeparata (Fu Zi) is the processed lateral root of Aconitum carmichaelii Debx, which is widely used in emergency clinics. Poisoning incidents and adverse reactions occur with the improper intake of Fu Zi. Metabolic characteristics of aconitum alkaloids of Fu Zi may vary, and the effects of Fu Zi in healthy and Long QT syndrome (LQTS) patients is unknown. In this experiment, 24 Sprague Dawley rats were randomly divided into three groups: 2.0, 1.0, and 0.5 g/kg dose groups, and blood samples were collected after the oral administration of Fu Zi extract. We used an ultra-high performance liquid chromatography-tandem mass spectrometry system to detect the concentrations of six aconitum alkaloids. Cell toxicity, calcium imaging, and patch-clamp recordings of human induced pluripotent stem cells-cardiomyocytes (hiPSC-CMs) of aconitine in healthy and LQTS were observed. We found that the AUC(0-48h), Cmax, and t1/2 of the six compounds increased with the multiplicative dosages; those in the high group were significantly higher than those in the low group. Aconitine concentration-dependently decreased the amplitude, which has no significant effect on the cell index of normal hiPSC-CMs. Aconitine at 5.0 µM decreased the cell index between 5-30 min for LQTS hiPSC-CMs. Meanwhile, aconitine significantly increased the frequency of calcium transients in LQTS at 5 µM. Aconitine significantly shortened the action potential duration of human cardiomyocytes in both normal and LQTS groups. These results show metabolic behaviors of aconitum alkaloids in different concentrations of Fu Zi and effects of aconitine in healthy and LQTS patients.


Asunto(s)
Aconitum , Alcaloides , Medicamentos Herbarios Chinos , Células Madre Pluripotentes Inducidas , Síndrome de QT Prolongado , Aconitina/farmacología , Aconitum/química , Alcaloides/análisis , Alcaloides/farmacología , Animales , Calcio , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/química , Humanos , Síndrome de QT Prolongado/inducido químicamente , Miocitos Cardíacos , Ratas , Ratas Sprague-Dawley
11.
Int J Radiat Biol ; 98(9): 1442-1451, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35445640

RESUMEN

PURPOSE: After radiation therapy of brain tumors, radiation-induced cognitive impairment is a common and severe complication. Neuroinflammation mediated by microglia is a critical event that accelerates cognitive or functional decline. Ferulic acid (FA), a phenolic plant component, possesses multiple pharmacological effects, such as anti-inflammatory and anti-radiation. The current research attempts to ascertain the protection of FA on radiation-induced neuroinflammation and the mechanism of this effect. MATERIALS AND METHODS: C57BL/6 mice were irradiated with 60Co γ-ray to establish a brain injury model. The Morris water maze experiment was used to observe the effects of FA on the spatial learning and memory impairment of irradiated mice. The pathological changes of hippocampal tissue were observed by HE staining. Besides, microglia BV-2 cell lines were used to study the anti-neuroinflammatory impacts of FA on radiation-induced microglial activation and further elucidate the potential mechanisms influencing FA-mediated neuroprotective properties. The cell morphological changes were observed using an optical microscope. The cytotoxicity of FA and radiation to BV-2 cells was determined using the CCK-8 assay. Additionally, Western blot and quantitative real-time PCR detected the expression and transcription of NLRP3 inflammasome and pro-inflammatory cytokines in hippocampus and BV-2 cells. RESULTS: FA could enhance learning and memory capacity and ameliorate pathological changes in the hippocampal tissues of irradiated mice. The cell radiation injury model was established by 8 Gy 60Co γ-ray, and the concentration of subsequent administration was determined to be 2.5, 5, and 10 µmol/L. Furthermore, FA could suppress the transcription and expression of NLRP3 in hippocampal tissue and microglia, and also the increased secretion of pro-inflammatory factors. CONCLUSION: This study established that FA targeting the NLRP3 inflammasome has a neuroprotective effect against radiation-induced nerve damage, implying that FA might have some potential in the treatment of radiation-induced cognitive impairment.


Asunto(s)
Ácidos Cumáricos , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Ácidos Cumáricos/farmacología , Inflamasomas/efectos de los fármacos , Inflamasomas/metabolismo , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedades Neuroinflamatorias , Neuroprotección
12.
Artículo en Inglés | MEDLINE | ID: mdl-35310026

RESUMEN

In recent years, many traditional Chinese medicine injections based on Panax notoginseng saponin (PNS) have been reported to cause anaphylaxis. Previous studies on the anaphylactic saponins of PNS and their mechanism are inadequate. In this study, potential anaphylactic saponins were obtained by the separation of PNS and preparation of each individual component through comprehensive techniques, such as liquid chromatography, preparative chromatography, HPLC, NMR, and MS. The anaphylactic abilities of these saponins were tested using RBL-2H3 cells via a ß-hexosaminidase release rate test. The results for the mechanism of anaphylaxis were obtained by a proteomic analysis using RBL-2H3 cells. The results indicate that, among all the saponins prepared, gypenoside LXXV and notoginsenoside T5 showed strong anaphylactic abilities and notoginsenoside ST-4 and ginsenoside Rk3 showed weak anaphylactic abilities. These 4 saponins can induce anaphylaxis via direct stimulation of effector cells. The gene oncology enrichment analysis results showed that, among these saponins, only gypenoside LXXV was related to organelles of the endoplasmic reticulum and Golgi apparatus and biological processes in response to organic cyclic compounds. Four proteins in RBL-2H3 cells with the accession numbers A0A0G2JWQ0, D3ZL85, D4A5G8, and Q8K3F0 were identified as crucial proteins in the anaphylactic process. This research will help traditional Chinese medicine injection manufacturers strengthen their quality control and ensure the safety of anaphylactic saponins.

13.
J Appl Toxicol ; 42(3): 529-539, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34550611

RESUMEN

The effects of low-dose radiation (LDR, ≤0.1 Gy) on living organisms have been the hot areas of radiation biology but do not reach a definitive conclusion yet. So far, few studies have adequately accounted for the male reproductive system responses to LDR, particularly the regulation of testosterone content. Hence, this study was designed to evaluate the effects of LDR on Leydig cells and testicular tissue, especially the ability to synthesize testosterone. We found that less than 0.2-Gy 60 Co gamma rays did not cause significant changes in the hemogram index and the body weight; also, pathological examination did not find obvious structural alterations in testis, epididymis, and other radiation-sensitive organs. Consistently, the results from in vitro showed that only more than 0.5-Gy gamma rays could induce remarkable DNA damage, cycle arrest, and apoptosis. Notably, LDR disturbed the contents of testosterone in mice serums and culture supernatants of TM3 cells and dose dependently increased the expression of 3ß-HSD. After cotreatment with trilostane (Tril), the inhibitor of 3ß-HSD, increased testosterone could be partially reversed. Besides, DNA damage repair-related enzymes, including DNMT1, DNMT3B, and Sirt1, were increased in irradiated TM3 cells, accompanying by evident demethylation in the gene body of 3ß-HSD. In conclusion, our results strongly suggest that LDR could induce obvious perturbation in the synthesis of testosterone without causing organic damage, during which DNA demethylation modification of 3ß-HSD might play a crucial role and would be a potential target to prevent LDR-induced male reproductive damage.


Asunto(s)
Desmetilación , Rayos gamma/efectos adversos , Células Madre Mesenquimatosas/efectos de la radiación , Complejos Multienzimáticos/metabolismo , Progesterona Reductasa/metabolismo , Esteroide Isomerasas/metabolismo , Testículo/efectos de la radiación , Testosterona/metabolismo , Animales , Relación Dosis-Respuesta en la Radiación , Masculino , Ratones , Ratones Endogámicos C57BL
14.
Xenobiotica ; 51(7): 752-763, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33896369

RESUMEN

The induction of cytochrome P450s can result in reduced drug efficacy and lead to potential drug-drug interactions. The xenoreceptors-aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR), and pregnane X receptor (PXR)-play key roles in CYP induction by xenobiotics. In order to be able to rapidly screen for the induction of three enzymes (CYP1A1, CYP2B6, and CYP3A4), we generated a stable AhR-responsive HepG2 cell line, a stable CAR-responsive HepG2 cell line, and a stable PXR-responsive HepG2 cell line.To validate these stable xenoreceptor-responsive HepG2 cell lines, we evaluated the induction of the different Gaussia reporter activities, as well as the mRNA and protein expression levels of endogenous CYPs in response to different inducers.The induction of luciferase activity in the stable xenoreceptor-responsive HepG2 cell lines by specific inducers occurred in a concentration dependent manner. There was a positive correlation between the induction of luciferase activities and the induction endogenous CYP mRNA expression levels. These xenoreceptor-responsive HepG2 cell lines were further validated with known CYP1A1, CYP2B6, and CYP3A4 inducers.These stable xenoreceptor-responsive HepG2 cell lines may be used in preclinical research for the rapid and sensitive detection of AhR, CAR, and PXR ligands that induce CYP450 isoforms.


Asunto(s)
Citocromo P-450 CYP3A , Receptores de Esteroides , Citocromo P-450 CYP1A1 , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP2B6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Inducción Enzimática , Genes Reporteros , Hepatocitos/metabolismo , Luciferasas/genética , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo
15.
Chin Med ; 16(1): 3, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407692

RESUMEN

BACKGROUND: OPD and OPD' are the two main active components of Ophiopogon japonicas in Shenmai injection (SMI). Being isomers of each other, they are supposed to have similar pharmacological activities, but the actual situation is complicated. The difference of hemolytic behavior between OPD and OPD' in vivo and in vitro was discovered and reported by our group for the first time. In vitro, only OPD' showed hemolysis reaction, while in vivo, both OPD and OPD' caused hemolysis. In vitro, the primary cause of hemolysis has been confirmed to be related to the difference between physical and chemical properties of OPD and OPD'. In vivo, although there is a possible explanation for this phenomenon, the one is that OPD is bio-transformed into OPD' or its analogues in vivo, the other one is that both OPD and OPD' were metabolized into more activated forms for hemolysis. However, the mechanism of hemolysis in vivo is still unclear, especially the existing literature are still difficult to explain why OPD shows the inconsistent hemolysis behavior in vivo and in vitro. Therefore, the study of hemolysis of OPD and OPD' in vivo is of great practical significance in response to the increase of adverse events of SMI. METHODS: Aiming at the hemolysis in vivo, this manuscript adopted untargeted metabolomics and lipidomics technology to preliminarily explore the changes of plasma metabolites and lipids of OPD- and OPD'-treated rats. Metabolomics and lipidomics analyses were performed on ultra-high performance liquid chromatography (UPLC) system tandem with different mass spectrometers (MS) and different columns respectively. Multivariate statistical approaches such as principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA) were applied to screen the differential metabolites and lipids. RESULTS: Both OPD and OPD' groups experienced hemolysis, Changes in endogenous differential metabolites and differential lipids, enrichment of differential metabolic pathways, and correlation analysis of differential metabolites and lipids all indicated that the causes of hemolysis by OPD and OPD' were closely related to the interference of phospholipid metabolism. CONCLUSIONS: This study provided a comprehensive description of metabolomics and lipidomics changes between OPD- and OPD'-treated rats, it would add to the knowledge base of the field, which also provided scientific guidance for the subsequent mechanism research. However, the underlying mechanism require further research.

16.
J Ethnopharmacol ; 270: 113765, 2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-33418031

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Aconite is a processed product of seminal root of perennial herbaceous plant Aconitum Carmichaclii Debx. of Ranunculaceae. It has the effects of warming and tonifying heart yang and restoring yang to save from collapse. Aconitine is the main effective constituent of aconite and used to prevent and treat heart disease. However, how aconitine exerts myocardial protection is still poorly understood. AIM OF THE STUDY: The present study aimed to investigate the effects of aconitine on mitochondrial dysfunction and explore its mechanism of action. MATERIALS AND METHODS: The model of myocardial injury was induced by Angiotensin II (Ang II) (1 × 10-6 mol L-1), and H9c2 cells were incubated with different concentrations of aconitine. The effect of aconitine on mitochondrial was determined by flow cytometry, transmission electron microscopy, luciferase, Seahorse technique and Western blot. The effects of aconitine on sirtuin-3 (Sirt3) activity and Cyclophilin D (CypD) acetylation were detected by immunofluorescence, RT-PCR and co-immunoprecipitation. RESULTS: We demonstrate that aconitine alleviates the energy metabolic dysfunction of H9c2 cells by activating Sirt3 to deacetylate CypD and inhibiting mitochondrial permeability transition pore (mPTP) opening. In cardiomyocytes, aconitine significantly reduced mitochondrial fragmentation, inhibited acetylation of CypD, suppressed the mPTP opening, mitigated mitochondrial OXPHOS disorders, and improved the synthesis ability of ATP. In contrast, Sirt3 deficiency abolished the effects of aconitine on mPTP and OXPHOS, indicating that aconitine improves mitochondrial function by activating Sirt3. CONCLUSIONS: These results showed that aconitine attenuated the energy metabolism disorder by promoting Sirt3 expression and reducing CypD-mediated mPTP excess openness, rescuing mitochondrial function. Improve mitochondrial function may be a therapeutic approach for treating heart disease, which will generate fresh insight into the cardioprotective of aconitine.


Asunto(s)
Aconitina/farmacología , Cardiotónicos/farmacología , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Peptidil-Prolil Isomerasa F/metabolismo , Sirtuinas/metabolismo , Acetilación/efectos de los fármacos , Animales , Línea Celular , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Mitocondrias/ultraestructura , Poro de Transición de la Permeabilidad Mitocondrial/antagonistas & inhibidores , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Miocitos Cardíacos/ultraestructura , Fosforilación Oxidativa/efectos de los fármacos , Ratas , Sirtuinas/genética
17.
Stem Cells Dev ; 30(1): 39-48, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33176587

RESUMEN

A transgenic acute promyelocytic leukemia (APL) murine model established by Michael Bishop by cloning a human PML-RARα cDNA into the hMRP8 expression cassette has been widely used in the all-trans retinoid acid and arsenic preparations for the research of APL. However, in the existing literature, the data of regularity and characteristics of the pathogenesis of this model were still missing, which hinder the development of many studies, especially application of new technologies such as single-cell sequencing. Therefore, in this article, we have made up this part of the missing data using an improved APL murine model. We clarified the effects of different inoculation doses on the onset time, latency, morbidity, life span, and proportion of APL cells in peripheral blood (PB), spleen, bone marrow, and so on. The relationship between the proportion of APL cells in the bone marrow, spleen, and PB and organ histological changes was also revealed. These results were a supplement and refinement of this APL model. It would add to the knowledge base of the field and aid in ensuring that accurate models are used for directed interventions. It also provides a great convenience for the researchers who will carry out similar research.


Asunto(s)
Modelos Animales de Enfermedad , Leucemia Promielocítica Aguda/genética , Proteínas de Fusión Oncogénica/genética , Transgenes/genética , Animales , Médula Ósea/metabolismo , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Citometría de Flujo/métodos , Células Madre Hematopoyéticas/metabolismo , Humanos , Leucemia Promielocítica Aguda/sangre , Leucemia Promielocítica Aguda/patología , Masculino , Ratones Transgénicos , Bazo/metabolismo , Análisis de Supervivencia , Factores de Tiempo
18.
Oxid Med Cell Longev ; 2020: 8870656, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33381274

RESUMEN

Ophiopogonin D (OPD) and Ophiopogonin D' (OPD') are two bioactive ingredients in Ophiopogon japonicus. Previously published studies have often focused on the therapeutic effects related to OPD's antioxidant capacity but underestimated the cytotoxicity-related side effects of OPD', which may result in unpredictable risks. In this study, we reported another side effect of OPD', hemolysis, and what was unexpected was that this side effect also appeared with OPD. Although hemolysis effects for saponins are familiar to researchers, the hemolytic behavior of OPD or OPD' and the interactions between these two isomers are unique. Therefore, we investigated the effects of OPD and OPD' alone or in combination on the hemolytic behavior in vitro and in vivo and adopted chemical compatibility and proteomics methods to explain the potential mechanism. Meanwhile, to explain the drug-drug interactions (DDIs), molecular modeling was applied to explore the possible common targets. In this study, we reported that OPD' caused hemolysis both in vitro and in vivo, while OPD only caused hemolysis in vivo. We clarified the differences and DDIs in the hemolytic behavior of the two isomers. An analysis of the underlying mechanism governing this phenomenon showed that hemolysis caused by OPD or OPD' was related to the destruction of the redox balance of erythrocytes. In vivo, in addition to the redox imbalance, the proteomics data demonstrated that lipid metabolic disorders and mitochondrial energy metabolism are extensively involved by hemolysis. We provided a comprehensive description of the hemolysis of two isomers in Ophiopogon japonicus, and risk warnings related to hemolysis were presented. Our research also provided a positive reference for the development and further research of such bioactive components.


Asunto(s)
Hemólisis/efectos de los fármacos , Ophiopogon/química , Saponinas/farmacología , Espirostanos/farmacología , Animales , Antioxidantes/efectos adversos , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Células Sanguíneas/efectos de los fármacos , Células Sanguíneas/metabolismo , Medicamentos Herbarios Chinos/efectos adversos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Isomerismo , Masculino , Ratones , Oxidación-Reducción/efectos de los fármacos , Proteoma/efectos de los fármacos , Proteoma/metabolismo , Conejos , Ratas , Ratas Wistar , Medición de Riesgo , Saponinas/efectos adversos , Saponinas/química , Saponinas/aislamiento & purificación , Espirostanos/efectos adversos , Espirostanos/química , Espirostanos/aislamiento & purificación , Pruebas de Toxicidad Aguda
19.
Front Pharmacol ; 11: 1237, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32903457

RESUMEN

Previous studies revealed the hepatotoxic effect of aurantio-obtusin on rats. The aim of this study was to identify potential biomarkers of urine caused by aurantio-obtusin. Sprague-Dawley (SD) rats with body weight of 0, 4, 40, and 200 mg/kg were orally given aurantio-obtusin for 28 days, and urine was collected for 24 h after the last administration. The urine metabolites in the aurantio-obtusin group and the control group were analyzed by ultraperformance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS). Twenty-three metabolites were identified as potential biomarkers, and 10 of them were up-regulated, including xanthosine, hippuric acid, 5-L-glutamyl-taurine, etc. The other 13 biomarkers were down-regulated, including thymidine, 3-methyldioxyindole, cholic acid, etc. The significant changes of these biomarkers indicated that purine metabolism, taurine and hypotaurine metabolism, primary bile acid biosynthesis, pyrimidine metabolism, and tryptophan metabolism played an important role in the hepatotoxicity of aurantio-obtusin in rats. In this paper, the safety and potential risk of aurantio-obtusin were studied for the first time by combining the toxicity of aurantio-obtusin with the results of urine metabolomics, which provided information for the mechanism of liver injury induced by aurantio-obtusin.

20.
Acta Pharmacol Sin ; 41(12): 1622, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32457415

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA