Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 916: 169999, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38242471

RESUMEN

The use of taste agents to regulate the grazing behavior of livestock is a new attempt in pasture management, but the effects on grassland plant communities are not clear at present. Therefore, the following scientific questions need to be addressed: (1) how do different taste agents affected plant community structure by changing feed intake? (2) What was the mechanism of this effect? We proposed the following hypotheses: (1) Salt and sweetener increased feed intake of livestock and decreased the biomass of plant community, while bitters did the opposite. (2) Taste agents can regulate the relationship between plant species, and different taste agents can enhance or weaken the competitiveness of the different plants. In order to test the hypothesis, a grazing experiment with yaks was conducted in the alpine meadows of the Tibetan Plateau. Denatonium benzoate (Bitterant), NaCl (Salt), and sodium cyclamate (Sweetener) were sprayed onto the meadows twice a year, along with a control treatment of tap water. The results showed that (1) Salt increased the feed intake of yak significantly; bitterant decreased the feed intake of livestock and increased the biomass of plant community. (2) Salt increased the Pielou index of the plant community significantly. (3) The stability of plant community ranking from high to low is as follows: Control > Bitterant > Sweetener > Salt. (4) Bitterant and salt improved grazing tolerance of grassland and salt reduced the edibility of grassland. (5) The use of taste agents reduced the correlation between dominant species and led to the fragmentation of the relationship chain. The results of this study will provide a theoretical basis for using taste agents to regulate the community, species biodiversity management, restoration of degraded grassland, promoting utilization of grassland though controlling livestock selectivity.


Asunto(s)
Pradera , Gusto , Animales , Bovinos , Agentes Aversivos , Suelo/química , Plantas , Ganado , Cloruro de Sodio , Edulcorantes , Tibet
2.
Animal ; 17(2): 100703, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36621111

RESUMEN

Feeding behaviour plays a significant role in promoting good animal health and welfare. It is also reflective of the quality and quantity of available feed. In fact, grazing livestock do not select their feed randomly, rather their behaviour is influenced by the texture, taste, and smell of each pasture species. Although taste agents are often used to modify feed intake for captive livestock, the effect on the feeding behaviour of grazing livestock has not yet been extensively evaluated in native grasslands. To address this gap in knowledge, herein, we sprayed three types of taste agents-salty (SA), sweet (SW), and bitter (BT)-on alpine meadows to investigate their effect on the grazing behaviour of yaks (Bos Grunniens) on the Qinghai-Tibetan Plateau (QTP). Behavioural observations showed that grazing was concentrated primarily in the morning and afternoon, while ruminating/resting peaked at noon; however, the diurnal behavioural patterns of grazing yaks were not affected by the taste agents. Application of the SA agent significantly increased the yaks' grazing time, bites per minute, bites per step, time per feeding station, and steps per feeding station, while significantly reducing walking time, steps per minute, and number of feeding stations per minute. Meanwhile, application of the SW agent significantly increased the yaks' time per feeding station, however, significantly reduced the steps per minute and number of feeding stations per minute. In contrast, the BT agent significantly increased the yaks' walking time, steps per minute, and number of feeding stations per minute, while significantly reducing grazing time, bites per minute, bites per step, and time per feeding station. Application of the SA agent also significantly increased the intake of favoured, edible, and inedible forage, while the SW agent improved inedible forage intake, however, had a more subtle effect on favoured and edible forage intake. Meanwhile, the BT agent had an inhibitory effect on grazing intake. Hence, the structural equation model suggested that taste agents may directly or indirectly influence grazing behaviour by regulating feeding behaviour. Our findings provide a theoretical basis for using taste agents in grasslands to control the grazing behaviour of livestock and provide a method to promote the stability of grassland communities, while mitigating the degradation of grasslands in the QTP.


Asunto(s)
Pradera , Gusto , Bovinos , Animales , Conducta Alimentaria/fisiología , Ingestión de Alimentos , Estaciones del Año , Ganado
3.
J Environ Manage ; 320: 115877, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35932747

RESUMEN

Plant litter can greatly alter community compositional dynamics and variability of intraspecific interactions in grasslands, and thus the overall ecosystem structure and functions. However, whether plant activity can be driven by plant litter to modify plant community heterogeneity remains poorly explored. We investigate the responses of plant community heterogeneity to litter addition as well as their associated mechanisms. Here we conducted a three-year field experiment in a Tibetan alpine meadow to explore the effects of multiple plant litter addition (five mass levels and three species) on plant communities. We found that the effect of litter manipulation on plant community heterogeneity was mainly driven by litter mass rather than litter species. Higher litter mass manipulation significantly enhanced plant community heterogeneity, which was mainly determined by the niche breadth of forbs and the distribution patterns of functional composition rather than plant diversity. Our findings provide significant insights for understanding the effects of plant litter on grassland ecosystem dynamics to maintain the structure and function of ecosystems. Furthermore, this study suggests that reasonable management practices (e.g., moderate grazing in non-growing seasons) may be pivotal in achieving sustainability of grassland systems through plant litter dynamics.


Asunto(s)
Ecosistema , Pradera , Plantas , Suelo
4.
Front Plant Sci ; 12: 773804, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899801

RESUMEN

Litter has been shown to alter the structure and functions of grassland ecosystems, and a knowledge of the effects of litter is essential for understanding the dynamics of ecosystem multifunctionality. However, relatively little is known about the effects of plant litter on ecosystem multifunctionality in alpine meadows. A three-year field experiment was conducted to explore how litter manipulation affects ecosystem multifunctionality. The plant litter treatments that were applied consisted of a range of litter mass levels and three dominant plant species, in an alpine meadow on the Qinghai-Tibet Plateau. The results showed that litter mass manipulation had a negative effect on ecosystem multifunctionality and most individual ecosystem functions (species richness, plant cover, and above-ground biomass) but had a positive effect on plant functional group evenness. In particular, the study found that low or medium amounts of litter (≤200gm-2) were beneficial in maintaining a high level of ecosystem multifunctionality. Furthermore, a structural equation model revealed that ecosystem multifunctionality was driven by indirect effects of litter mass manipulation on plant functional group evenness, plant cover, and species richness. These results suggest that litter-induced effects may be a major factor in determining grassland ecosystem multifunctionality, and they indicate the potential importance of grassland management strategies that regulate the dynamics of litter accumulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA