Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
JMIR Public Health Surveill ; 10: e52047, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38569175

RESUMEN

BACKGROUND: Prepandemic sentinel surveillance focused on improved management of winter pressures, with influenza-like illness (ILI) being the key clinical indicator. The World Health Organization (WHO) global standards for influenza surveillance include monitoring acute respiratory infection (ARI) and ILI. The WHO's mosaic framework recommends that the surveillance strategies of countries include the virological monitoring of respiratory viruses with pandemic potential such as influenza. The Oxford-Royal College of General Practitioner Research and Surveillance Centre (RSC) in collaboration with the UK Health Security Agency (UKHSA) has provided sentinel surveillance since 1967, including virology since 1993. OBJECTIVE: We aim to describe the RSC's plans for sentinel surveillance in the 2023-2024 season and evaluate these plans against the WHO mosaic framework. METHODS: Our approach, which includes patient and public involvement, contributes to surveillance objectives across all 3 domains of the mosaic framework. We will generate an ARI phenotype to enable reporting of this indicator in addition to ILI. These data will support UKHSA's sentinel surveillance, including vaccine effectiveness and burden of disease studies. The panel of virology tests analyzed in UKHSA's reference laboratory will remain unchanged, with additional plans for point-of-care testing, pneumococcus testing, and asymptomatic screening. Our sampling framework for serological surveillance will provide greater representativeness and more samples from younger people. We will create a biomedical resource that enables linkage between clinical data held in the RSC and virology data, including sequencing data, held by the UKHSA. We describe the governance framework for the RSC. RESULTS: We are co-designing our communication about data sharing and sampling, contextualized by the mosaic framework, with national and general practice patient and public involvement groups. We present our ARI digital phenotype and the key data RSC network members are requested to include in computerized medical records. We will share data with the UKHSA to report vaccine effectiveness for COVID-19 and influenza, assess the disease burden of respiratory syncytial virus, and perform syndromic surveillance. Virological surveillance will include COVID-19, influenza, respiratory syncytial virus, and other common respiratory viruses. We plan to pilot point-of-care testing for group A streptococcus, urine tests for pneumococcus, and asymptomatic testing. We will integrate test requests and results with the laboratory-computerized medical record system. A biomedical resource will enable research linking clinical data to virology data. The legal basis for the RSC's pseudonymized data extract is The Health Service (Control of Patient Information) Regulations 2002, and all nonsurveillance uses require research ethics approval. CONCLUSIONS: The RSC extended its surveillance activities to meet more but not all of the mosaic framework's objectives. We have introduced an ARI indicator. We seek to expand our surveillance scope and could do more around transmissibility and the benefits and risks of nonvaccine therapies.


Asunto(s)
COVID-19 , Vacunas contra la Influenza , Gripe Humana , Infecciones del Sistema Respiratorio , Virosis , Humanos , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Vigilancia de Guardia , Infecciones del Sistema Respiratorio/epidemiología , Organización Mundial de la Salud , Atención Primaria de Salud
2.
JMIR Res Protoc ; 12: e46938, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37327029

RESUMEN

BACKGROUND: Molecular point-of-care testing (POCT) used in primary care can inform whether a patient presenting with an acute respiratory infection has influenza. A confirmed clinical diagnosis, particularly early in the disease, could inform better antimicrobial stewardship. Social distancing and lockdowns during the COVID-19 pandemic have disturbed previous patterns of influenza infections in 2021. However, data from samples taken in the last quarter of 2022 suggest that influenza represents 36% of sentinel network positive virology, compared with 24% for respiratory syncytial virus. Problems with integration into the clinical workflow is a known barrier to incorporating technology into routine care. OBJECTIVE: This study aims to report the impact of POCT for influenza on antimicrobial prescribing in primary care. We will additionally describe severe outcomes of infection (hospitalization and mortality) and how POCT is integrated into primary care workflows. METHODS: The impact of POCT for influenza on antimicrobial stewardship (PIAMS) in UK primary care is an observational study being conducted between December 2022 and May 2023 and involving 10 practices that contribute data to the English sentinel network. Up to 1000 people who present to participating practices with respiratory symptoms will be swabbed and tested with a rapid molecular POCT analyzer in the practice. Antimicrobial prescribing and other study outcomes will be collected by linking information from the POCT analyzer with data from the patient's computerized medical record. We will collect data on how POCT is incorporated into practice using data flow diagrams, unified modeling language use case diagrams, and Business Process Modeling Notation. RESULTS: We will present the crude and adjusted odds of antimicrobial prescribing (all antibiotics and antivirals) given a POCT diagnosis of influenza, stratifying by whether individuals have a respiratory or other relevant diagnosis (eg, bronchiectasis). We will also present the rates of hospital referrals and deaths related to influenza infection in PIAMS study practices compared with a set of matched practices in the sentinel network and the rest of the network. We will describe any difference in implementation models in terms of staff involved and workflow. CONCLUSIONS: This study will generate data on the impact of POCT testing for influenza in primary care as well as help to inform about the feasibility of incorporating POCT into primary care workflows. It will inform the design of future larger studies about the effectiveness and cost-effectiveness of POCT to improve antimicrobial stewardship and any impact on severe outcomes. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/46938.

3.
JMIR Public Health Surveill ; 8(12): e39141, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36534462

RESUMEN

BACKGROUND: The Oxford-Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) is one of Europe's oldest sentinel systems, working with the UK Health Security Agency (UKHSA) and its predecessor bodies for 55 years. Its surveillance report now runs twice weekly, supplemented by online observatories. In addition to conducting sentinel surveillance from a nationally representative group of practices, the RSC is now also providing data for syndromic surveillance. OBJECTIVE: The aim of this study was to describe the cohort profile at the start of the 2021-2022 surveillance season and recent changes to our surveillance practice. METHODS: The RSC's pseudonymized primary care data, linked to hospital and other data, are held in the Oxford-RCGP Clinical Informatics Digital Hub, a Trusted Research Environment. We describe the RSC's cohort profile as of September 2021, divided into a Primary Care Sentinel Cohort (PCSC)-collecting virological and serological specimens-and a larger group of syndromic surveillance general practices (SSGPs). We report changes to our sampling strategy that brings the RSC into alignment with European Centre for Disease Control guidance and then compare our cohort's sociodemographic characteristics with Office for National Statistics data. We further describe influenza and COVID-19 vaccine coverage for the 2020-2021 season (week 40 of 2020 to week 39 of 2021), with the latter differentiated by vaccine brand. Finally, we report COVID-19-related outcomes in terms of hospitalization, intensive care unit (ICU) admission, and death. RESULTS: As a response to COVID-19, the RSC grew from just over 500 PCSC practices in 2019 to 1879 practices in 2021 (PCSC, n=938; SSGP, n=1203). This represents 28.6% of English general practices and 30.59% (17,299,780/56,550,136) of the population. In the reporting period, the PCSC collected >8000 virology and >23,000 serology samples. The RSC population was broadly representative of the national population in terms of age, gender, ethnicity, National Health Service Region, socioeconomic status, obesity, and smoking habit. The RSC captured vaccine coverage data for influenza (n=5.4 million) and COVID-19, reporting dose one (n=11.9 million), two (n=11 million), and three (n=0.4 million) for the latter as well as brand-specific uptake data (AstraZeneca vaccine, n=11.6 million; Pfizer, n=10.8 million; and Moderna, n=0.7 million). The median (IQR) number of COVID-19 hospitalizations and ICU admissions was 1181 (559-1559) and 115 (50-174) per week, respectively. CONCLUSIONS: The RSC is broadly representative of the national population; its PCSC is geographically representative and its SSGPs are newly supporting UKHSA syndromic surveillance efforts. The network captures vaccine coverage and has expanded from reporting primary care attendances to providing data on onward hospital outcomes and deaths. The challenge remains to increase virological and serological sampling to monitor the effectiveness and waning of all vaccines available in a timely manner.


Asunto(s)
COVID-19 , Médicos Generales , Vacunas contra la Influenza , Gripe Humana , Humanos , Gripe Humana/epidemiología , Vacunas contra la COVID-19 , Medicina Estatal , Vacunación , Reino Unido/epidemiología
4.
JMIR Public Health Surveill ; 8(8): e36989, 2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35861678

RESUMEN

BACKGROUND: Following COVID-19, up to 40% of people have ongoing health problems, referred to as postacute COVID-19 or long COVID (LC). LC varies from a single persisting symptom to a complex multisystem disease. Research has flagged that this condition is underrecorded in primary care records, and seeks to better define its clinical characteristics and management. Phenotypes provide a standard method for case definition and identification from routine data and are usually machine-processable. An LC phenotype can underpin research into this condition. OBJECTIVE: This study aims to develop a phenotype for LC to inform the epidemiology and future research into this condition. We compared clinical symptoms in people with LC before and after their index infection, recorded from March 1, 2020, to April 1, 2021. We also compared people recorded as having acute infection with those with LC who were hospitalized and those who were not. METHODS: We used data from the Primary Care Sentinel Cohort (PCSC) of the Oxford Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) database. This network was recruited to be nationally representative of the English population. We developed an LC phenotype using our established 3-step ontological method: (1) ontological step (defining the reasoning process underpinning the phenotype, (2) coding step (exploring what clinical terms are available, and (3) logical extract model (testing performance). We created a version of this phenotype using Protégé in the ontology web language for BioPortal and using PhenoFlow. Next, we used the phenotype to compare people with LC (1) with regard to their symptoms in the year prior to acquiring COVID-19 and (2) with people with acute COVID-19. We also compared hospitalized people with LC with those not hospitalized. We compared sociodemographic details, comorbidities, and Office of National Statistics-defined LC symptoms between groups. We used descriptive statistics and logistic regression. RESULTS: The long-COVID phenotype differentiated people hospitalized with LC from people who were not and where no index infection was identified. The PCSC (N=7.4 million) includes 428,479 patients with acute COVID-19 diagnosis confirmed by a laboratory test and 10,772 patients with clinically diagnosed COVID-19. A total of 7471 (1.74%, 95% CI 1.70-1.78) people were coded as having LC, 1009 (13.5%, 95% CI 12.7-14.3) had a hospital admission related to acute COVID-19, and 6462 (86.5%, 95% CI 85.7-87.3) were not hospitalized, of whom 2728 (42.2%) had no COVID-19 index date recorded. In addition, 1009 (13.5%, 95% CI 12.73-14.28) people with LC were hospitalized compared to 17,993 (4.5%, 95% CI 4.48-4.61; P<.001) with uncomplicated COVID-19. CONCLUSIONS: Our LC phenotype enables the identification of individuals with the condition in routine data sets, facilitating their comparison with unaffected people through retrospective research. This phenotype and study protocol to explore its face validity contributes to a better understanding of LC.


Asunto(s)
COVID-19 , COVID-19/complicaciones , Prueba de COVID-19 , Humanos , Fenotipo , Atención Primaria de Salud , Estudios Retrospectivos , Síndrome Post Agudo de COVID-19
5.
Lancet Digit Health ; 4(9): e646-e656, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35909058

RESUMEN

BACKGROUND: Accurate assessment of COVID-19 severity in the community is essential for patient care and requires COVID-19-specific risk prediction scores adequately validated in a community setting. Following a qualitative phase to identify signs, symptoms, and risk factors, we aimed to develop and validate two COVID-19-specific risk prediction scores. Remote COVID-19 Assessment in Primary Care-General Practice score (RECAP-GP; without peripheral oxygen saturation [SpO2]) and RECAP-oxygen saturation score (RECAP-O2; with SpO2). METHODS: RECAP was a prospective cohort study that used multivariable logistic regression. Data on signs and symptoms (predictors) of disease were collected from community-based patients with suspected COVID-19 via primary care electronic health records and linked with secondary data on hospital admission (outcome) within 28 days of symptom onset. Data sources for RECAP-GP were Oxford-Royal College of General Practitioners Research and Surveillance Centre (RCGP-RSC) primary care practices (development set), northwest London primary care practices (validation set), and the NHS COVID-19 Clinical Assessment Service (CCAS; validation set). The data source for RECAP-O2 was the Doctaly Assist platform (development set and validation set in subsequent sample). The two probabilistic risk prediction models were built by backwards elimination using the development sets and validated by application to the validation datasets. Estimated sample size per model, including the development and validation sets was 2880 people. FINDINGS: Data were available from 8311 individuals. Observations, such as SpO2, were mostly missing in the northwest London, RCGP-RSC, and CCAS data; however, SpO2 was available for 1364 (70·0%) of 1948 patients who used Doctaly. In the final predictive models, RECAP-GP (n=1863) included sex (male and female), age (years), degree of breathlessness (three point scale), temperature symptoms (two point scale), and presence of hypertension (yes or no); the area under the curve was 0·80 (95% CI 0·76-0·85) and on validation the negative predictive value of a low risk designation was 99% (95% CI 98·1-99·2; 1435 of 1453). RECAP-O2 included age (years), degree of breathlessness (two point scale), fatigue (two point scale), and SpO2 at rest (as a percentage); the area under the curve was 0·84 (0·78-0·90) and on validation the negative predictive value of low risk designation was 99% (95% CI 98·9-99·7; 1176 of 1183). INTERPRETATION: Both RECAP models are valid tools to assess COVID-19 patients in the community. RECAP-GP can be used initially, without need for observations, to identify patients who require monitoring. If the patient is monitored and SpO2 is available, RECAP-O2 is useful to assess the need for treatment escalation. FUNDING: Community Jameel and the Imperial College President's Excellence Fund, the Economic and Social Research Council, UK Research and Innovation, and Health Data Research UK.


Asunto(s)
COVID-19 , Disnea , Femenino , Humanos , Masculino , Atención Primaria de Salud , Estudios Prospectivos , Factores de Riesgo
6.
JMIR Public Health Surveill ; 8(8): e37668, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35605170

RESUMEN

BACKGROUND: Most studies of long COVID (symptoms of COVID-19 infection beyond 4 weeks) have focused on people hospitalized in their initial illness. Long COVID is thought to be underrecorded in UK primary care electronic records. OBJECTIVE: We sought to determine which symptoms people present to primary care after COVID-19 infection and whether presentation differs in people who were not hospitalized, as well as post-long COVID mortality rates. METHODS: We used routine data from the nationally representative primary care sentinel cohort of the Oxford-Royal College of General Practitioners Research and Surveillance Centre (N=7,396,702), applying a predefined long COVID phenotype and grouped by whether the index infection occurred in hospital or in the community. We included COVID-19 infection cases from March 1, 2020, to April 1, 2021. We conducted a before-and-after analysis of long COVID symptoms prespecified by the Office of National Statistics, comparing symptoms presented between 1 and 6 months after the index infection matched with the same months 1 year previously. We conducted logistic regression analysis, quoting odds ratios (ORs) with 95% CIs. RESULTS: In total, 5.63% (416,505/7,396,702) and 1.83% (7623/416,505) of the patients had received a coded diagnosis of COVID-19 infection and diagnosis of, or referral for, long COVID, respectively. People with diagnosis or referral of long COVID had higher odds of presenting the prespecified symptoms after versus before COVID-19 infection (OR 2.66, 95% CI 2.46-2.88, for those with index community infection and OR 2.42, 95% CI 2.03-2.89, for those hospitalized). After an index community infection, patients were more likely to present with nonspecific symptoms (OR 3.44, 95% CI 3.00-3.95; P<.001) compared with after a hospital admission (OR 2.09, 95% CI 1.56-2.80; P<.001). Mental health sequelae were more strongly associated with index hospital infections (OR 2.21, 95% CI 1.64-2.96) than with index community infections (OR 1.36, 95% CI 1.21-1.53; P<.001). People presenting to primary care after hospital infection were more likely to be men (OR 1.43, 95% CI 1.25-1.64; P<.001), more socioeconomically deprived (OR 1.42, 95% CI 1.24-1.63; P<.001), and with higher multimorbidity scores (OR 1.41, 95% CI 1.26-1.57; P<.001) than those presenting after an index community infection. All-cause mortality in people with long COVID was associated with increasing age, male sex (OR 3.32, 95% CI 1.34-9.24; P=.01), and higher multimorbidity score (OR 2.11, 95% CI 1.34-3.29; P<.001). Vaccination was associated with reduced odds of mortality (OR 0.10, 95% CI 0.03-0.35; P<.001). CONCLUSIONS: The low percentage of people recorded as having long COVID after COVID-19 infection reflects either low prevalence or underrecording. The characteristics and comorbidities of those presenting with long COVID after a community infection are different from those hospitalized. This study provides insights into the presentation of long COVID in primary care and implications for workload.


Asunto(s)
COVID-19 , Infecciones Comunitarias Adquiridas , Infección Hospitalaria , Síndrome Post Agudo de COVID-19 , Femenino , Humanos , Masculino , COVID-19/complicaciones , SARS-CoV-2
7.
J Infect ; 84(6): 814-824, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35405169

RESUMEN

OBJECTIVES: To monitor changes in seroprevalence of SARS-CoV-2 antibodies in populations over time and between different demographic groups. METHODS: A subset of practices in the Oxford-Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) sentinel network provided serum samples, collected when volunteer patients had routine blood tests. We tested these samples for SARS-CoV-2 antibodies using Abbott (Chicago, USA), Roche (Basel, Switzerland) and/or Euroimmun (Luebeck, Germany) assays, and linked the results to the patients' primary care computerised medical records. We report seropositivity by region and age group, and additionally examined the effects of gender, ethnicity, deprivation, rurality, shielding recommendation and smoking status. RESULTS: We estimated seropositivity from patients aged 18-100 years old, which ranged from 4.1% (95% CI 3.1-5.3%) to 8.9% (95% CI 7.8-10.2%) across the different assays and time periods. We found higher Euroimmun seropositivity in younger age groups, people of Black and Asian ethnicity (compared to white), major conurbations, and non-smokers. We did not observe any significant effect by region, gender, deprivation, or shielding recommendation. CONCLUSIONS: Our results suggest that prior to the vaccination programme, most of the population remained unexposed to SARS-CoV-2.


Asunto(s)
COVID-19 , Médicos Generales , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Antivirales , COVID-19/epidemiología , Inglaterra/epidemiología , Humanos , Persona de Mediana Edad , Atención Primaria de Salud , SARS-CoV-2 , Estudios Seroepidemiológicos , Adulto Joven
8.
JMIR Res Protoc ; 10(10): e30083, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34468322

RESUMEN

BACKGROUND: Since the start of the COVID-19 pandemic, efforts have been made to develop early warning risk scores to help clinicians decide which patient is likely to deteriorate and require hospitalization. The RECAP (Remote COVID-19 Assessment in Primary Care) study investigates the predictive risk of hospitalization, deterioration, and death of patients with confirmed COVID-19, based on a set of parameters chosen through a Delphi process performed by clinicians. We aim to use rich data collected remotely through the use of electronic data templates integrated in the electronic health systems of several general practices across the United Kingdom to construct accurate predictive models. The models will be based on preexisting conditions and monitoring data of a patient's clinical parameters (eg, blood oxygen saturation) to make reliable predictions as to the patient's risk of hospital admission, deterioration, and death. OBJECTIVE: This statistical analysis plan outlines the statistical methods to build the prediction model to be used in the prioritization of patients in the primary care setting. The statistical analysis plan for the RECAP study includes the development and validation of the RECAP-V1 prediction model as a primary outcome. This prediction model will be adapted as a three-category risk score split into red (high risk), amber (medium risk), and green (low risk) for any patient with suspected COVID-19. The model will predict the risk of deterioration and hospitalization. METHODS: After the data have been collected, we will assess the degree of missingness and use a combination of traditional data imputation using multiple imputation by chained equations, as well as more novel machine-learning approaches to impute the missing data for the final analysis. For predictive model development, we will use multiple logistic regression analyses to construct the model. We aim to recruit a minimum of 1317 patients for model development and validation. We will then externally validate the model on an independent dataset of 1400 patients. The model will also be applied for multiple different datasets to assess both its performance in different patient groups and its applicability for different methods of data collection. RESULTS: As of May 10, 2021, we have recruited 3732 patients. A further 2088 patients have been recruited through the National Health Service Clinical Assessment Service, and approximately 5000 patients have been recruited through the DoctalyHealth platform. CONCLUSIONS: The methodology for the development of the RECAP-V1 prediction model as well as the risk score will provide clinicians with a statistically robust tool to help prioritize COVID-19 patients. TRIAL REGISTRATION: ClinicalTrials.gov NCT04435041; https://clinicaltrials.gov/ct2/show/NCT04435041. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/30083.

9.
JMIR Res Protoc ; 10(5): e29072, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-33939619

RESUMEN

BACKGROUND: During the pandemic, remote consultations have become the norm for assessing patients with signs and symptoms of COVID-19 to decrease the risk of transmission. This has intensified the clinical uncertainty already experienced by primary care clinicians when assessing patients with suspected COVID-19 and has prompted the use of risk prediction scores, such as the National Early Warning Score (NEWS2), to assess severity and guide treatment. However, the risk prediction tools available have not been validated in a community setting and are not designed to capture the idiosyncrasies of COVID-19 infection. OBJECTIVE: The objective of this study is to produce a multivariate risk prediction tool, RECAP-V1 (Remote COVID-19 Assessment in Primary Care), to support primary care clinicians in the identification of those patients with COVID-19 that are at higher risk of deterioration and facilitate the early escalation of their treatment with the aim of improving patient outcomes. METHODS: The study follows a prospective cohort observational design, whereby patients presenting in primary care with signs and symptoms suggestive of COVID-19 will be followed and their data linked to hospital outcomes (hospital admission and death). Data collection will be carried out by primary care clinicians in four arms: North West London Clinical Commissioning Groups (NWL CCGs), Oxford-Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC), Covid Clinical Assessment Service (CCAS), and South East London CCGs (Doctaly platform). The study involves the use of an electronic template that incorporates a list of items (known as RECAP-V0) thought to be associated with disease outcome according to previous qualitative work. Data collected will be linked to patient outcomes in highly secure environments. We will then use multivariate logistic regression analyses for model development and validation. RESULTS: Recruitment of participants started in October 2020. Initially, only the NWL CCGs and RCGP RSC arms were active. As of March 24, 2021, we have recruited a combined sample of 3827 participants in these two arms. CCAS and Doctaly joined the study in February 2021, with CCAS starting the recruitment process on March 15, 2021. The first part of the analysis (RECAP-V1 model development) is planned to start in April 2021 using the first half of the NWL CCGs and RCGP RSC combined data set. Posteriorly, the model will be validated with the rest of the NWL CCGs and RCGP RSC data as well as the CCAS and Doctaly data sets. The study was approved by the Research Ethics Committee on May 27, 2020 (Integrated Research Application System number: 283024, Research Ethics Committee reference number: 20/NW/0266) and badged as National Institute of Health Research Urgent Public Health Study on October 14, 2020. CONCLUSIONS: We believe the validated RECAP-V1 early warning score will be a valuable tool for the assessment of severity in patients with suspected COVID-19 in the community, either in face-to-face or remote consultations, and will facilitate the timely escalation of treatment with the potential to improve patient outcomes. TRIAL REGISTRATION: ISRCTN registry ISRCTN13953727; https://www.isrctn.com/ISRCTN13953727. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/29072.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA