Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Biomolecules ; 13(12)2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38136660

RESUMEN

Variants in the GABRB gene, which encodes the ß subunit of the GABAA receptor, have been implicated in various epileptic encephalopathies and related neurodevelopmental disorders such as Dravet syndrome and Angelman syndrome. These conditions are often associated with early-onset seizures, developmental regression, and cognitive impairments. The severity and specific features of these encephalopathies can differ based on the nature of the genetic variant and its impact on GABAA receptor function. These variants can lead to dysfunction in GABAA receptor-mediated inhibition, resulting in an imbalance between neuronal excitation and inhibition that contributes to the development of seizures. Here, 13 de novo EE-associated GABRB variants, occurring as missense mutations, were analyzed to determine their impact on protein stability and flexibility, channel function, and receptor biogenesis. Our results showed that all mutations studied significantly impact the protein structure, altering protein stability, flexibility, and function to varying degrees. Variants mapped to the GABA-binding domain, coupling zone, and pore domain significantly impact the protein structure, modifying the ß+/α- interface of the receptor and altering channel activation and receptor trafficking. Our study proposes that the extent of loss or gain of GABAA receptor function can be elucidated by identifying the specific structural domain impacted by mutation and assessing the variability in receptor structural dynamics. This paves the way for future studies to explore and uncover links between the incidence of a variant in the receptor topology and the severity of the related disease.


Asunto(s)
Encefalopatías , Receptores de GABA-A , Humanos , Receptores de GABA-A/metabolismo , Mutación Missense , Mutación , Convulsiones
2.
Biomolecules ; 13(3)2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36979350

RESUMEN

Febrile seizures (FS) are the most common form of epilepsy in children between six months and five years of age. FS is a self-limited type of fever-related seizure. However, complicated prolonged FS can lead to complex partial epilepsy. We found that among the GABAA receptor subunit (GABR) genes, most variants associated with FS are harbored in the γ2 subunit (GABRG2). Here, we characterized the effects of eight variants in the GABAA receptor γ2 subunit on receptor biogenesis and channel function. Two-thirds of the GABRG2 variants followed the expected autosomal dominant inheritance in FS and occurred as missense and nonsense variants. The remaining one-third appeared as de novo in the affected probands and occurred only as missense variants. The loss of GABAA receptor function and dominant negative effect on GABAA receptor biogenesis likely caused the FS phenotype. In general, variants in the GABRG2 result in a broad spectrum of phenotypic severity, ranging from asymptomatic, FS, genetic epilepsy with febrile seizures plus (GEFS+), and Dravet syndrome individuals. The data presented here support the link between FS, epilepsy, and GABRG2 variants, shedding light on the relationship between the variant topological occurrence and disease severity.


Asunto(s)
Epilepsias Mioclónicas , Epilepsia , Convulsiones Febriles , Humanos , Convulsiones Febriles/genética , Receptores de GABA-A/genética , Epilepsias Mioclónicas/genética , Epilepsia/genética , Mutación Missense , Mutación
3.
Brain Commun ; 5(1): fcac332, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36632186

RESUMEN

Sleep is the preferential period when epileptic spike-wave discharges appear in human epileptic patients, including genetic epileptic seizures such as Dravet syndrome with multiple mutations including SCN1A mutation and GABAA receptor γ2 subunit Gabrg2Q390X mutation in patients, which presents more severe epileptic symptoms in female patients than male patients. However, the seizure onset mechanism during sleep still remains unknown. Our previous work has shown that the sleep-like state-dependent homeostatic synaptic potentiation can trigger epileptic spike-wave discharges in one transgenic heterozygous Gabrg2+/Q390X knock-in mouse model.1 Here, using this heterozygous knock-in mouse model, we hypothesized that slow-wave oscillations themselves in vivo could trigger epileptic seizures. We found that epileptic spike-wave discharges in heterozygous Gabrg2+/Q390X knock-in mice exhibited preferential incidence during non-rapid eye movement sleep period, accompanied by motor immobility/facial myoclonus/vibrissal twitching and more frequent spike-wave discharge incidence appeared in female heterozygous knock-in mice than male heterozygous knock-in mice. Optogenetically induced slow-wave oscillations in vivo significantly increased epileptic spike-wave discharge incidence in heterozygous Gabrg2+/Q390X knock-in mice with longer duration of non-rapid eye movement sleep or quiet-wakeful states. Furthermore, suppression of slow-wave oscillation-related homeostatic synaptic potentiation by 4-(diethylamino)-benzaldehyde injection (i.p.) greatly attenuated spike-wave discharge incidence in heterozygous knock-in mice, suggesting that slow-wave oscillations in vivo did trigger seizure activity in heterozygous knock-in mice. Meanwhile, sleep spindle generation in wild-type littermates and heterozygous Gabrg2+/Q390X knock-in mice involved the slow-wave oscillation-related homeostatic synaptic potentiation that also contributed to epileptic spike-wave discharge generation in heterozygous Gabrg2+/Q390X knock-in mice. In addition, EEG spectral power of delta frequency (0.1-4 Hz) during non-rapid eye movement sleep was significantly larger in female heterozygous Gabrg2+/Q390X knock-in mice than that in male heterozygous Gabrg2+/Q390X knock-in mice, which likely contributes to the gender difference in seizure incidence during non-rapid eye movement sleep/quiet-wake states of human patients. Overall, all these results indicate that slow-wave oscillations in vivo trigger the seizure onset in heterozygous Gabrg2+/Q390X knock-in mice, preferentially during non-rapid eye movement sleep period and likely generate the sex difference in seizure incidence between male and female heterozygous Gabrg2+/Q390X knock-in mice.

4.
Epilepsia ; 64(4): 1061-1073, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36495145

RESUMEN

OBJECTIVE: Infantile spasms is an epileptic encephalopathy of childhood, and its pathophysiology is largely unknown. We generated a heterozygous knock-in mouse with the human infantile spasms-associated de novo mutation GABRB3 (c.A328G, p.N110D) to investigate its molecular mechanisms and to establish the Gabrb3+/N110D knock-in mouse as a model of infantile spasms syndrome. METHODS: We used electroencephalography (EEG) and video monitoring to characterize seizure types, and a suite of behavioral tests to identify neurological and behavioral impairment in Gabrb3+/N110D knock-in mice. Miniature inhibitory postsynaptic currents (mIPSCs) were recorded from layer V/VI pyramidal neurons in somatosensory cortex, and extracellular multi-unit recordings from the ventral basal nucleus of the thalamus in a horizontal thalamocortical slice were used to assess spontaneous thalamocortical oscillations. RESULTS: The infantile spasms-associated human de novo mutation GABRB3 (c.A328G, p.N110D) caused epileptic spasms early in development and multiple seizure types in adult Gabrb3+/N110D knock-in mice. Signs of neurological impairment, anxiety, hyperactivity, social impairment, and deficits in spatial learning and memory were also observed. Gabrb3+/N110D mice had reduced cortical mIPSCs and increased duration of spontaneous oscillatory firing in the somatosensory thalamocortical circuit. SIGNIFICANCE: The Gabrb3+/N110D knock-in mouse has epileptic spasms, seizures, and other neurological impairments that are consistent with infantile spasms syndrome in patients. Multiple seizure types and abnormal behaviors indicative of neurological impairment both early and late in development suggest that Gabrb3+/N110D mice can be used to study the pathophysiology of infantile spasms. Reduced cortical inhibition and increased duration of thalamocortical oscillatory firing suggest perturbations in thalamocortical circuits.


Asunto(s)
Espasmos Infantiles , Humanos , Ratones , Animales , Espasmos Infantiles/genética , Receptores de GABA-A/genética , Convulsiones , Células Piramidales , Electroencefalografía , Síndrome , Espasmo
5.
HGG Adv ; 3(4): 100131, 2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36035247

RESUMEN

Whole-exome sequencing (WES) in the clinic has identified several rare monogenic developmental and epileptic encephalopathies (DEE) caused by ion channel variants. However, WES often fails to provide actionable insight for rare diseases, such as DEEs, due to the challenges of interpreting variants of unknown significance (VUS). Here, we describe a "personalized structural biology" (PSB) approach that leverages recent innovations in the analysis of protein 3D structures to address this challenge. We illustrate this approach in an Undiagnosed Diseases Network (UDN) individual with DEE symptoms and a de novo VUS in KCNC2 (p.V469L), the Kv3.2 voltage-gated potassium channel. A nearby KCNC2 variant (p.V471L) was recently suggested to cause DEE-like phenotypes. Computational structural modeling suggests that both affect protein function. However, despite their proximity, the p.V469L variant is likely to sterically block the channel pore, while the p.V471L variant is likely to stabilize the open state. Biochemical and electrophysiological analyses demonstrate heterogeneous loss-of-function and gain-of-function effects, as well as differential response to 4-aminopyridine treatment. Molecular dynamics simulations illustrate that the pore of the p.V469L variant is more constricted, increasing the energetic barrier for K+ permeation, whereas the p.V471L variant stabilizes the open conformation. Our results implicate variants in KCNC2 as causative for DEE and guide the interpretation of a UDN individual. They further delineate the molecular basis for the heterogeneous clinical phenotypes resulting from two proximal pathogenic variants. This demonstrates how the PSB approach can provide an analytical framework for individualized hypothesis-driven interpretation of protein-coding VUS.

6.
Brain Commun ; 3(2): fcab033, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34095830

RESUMEN

Dravet syndrome is a rare, catastrophic epileptic encephalopathy that begins in the first year of life, usually with febrile or afebrile hemiclonic or generalized tonic-clonic seizures followed by status epilepticus. De novo variants in genes that mediate synaptic transmission such as SCN1A and PCDH19 are often associated with Dravet syndrome. Recently, GABAA receptor subunit genes (GABRs) encoding α1 (GABRA1), ß3 (GABRB3) and γ2 (GABRG2), but not ß2 (GABRB2) or ß1 (GABRB1), subunits are frequently associated with Dravet syndrome or Dravet syndrome-like phenotype. We performed next generation sequencing on 870 patients with Dravet syndrome and identified nine variants in three different GABRs. Interestingly, the variants were all in genes encoding the most common GABAA receptor, the α1ß2γ2 receptor. Mutations in GABRA1 (c.644T>C, p. L215P; c.640C>T, p. R214C; c.859G>A; V287I; c.641G>A, p. R214H) and GABRG2 (c.269C>G, p. T90R; c.1025C>T, p. P342L) presented as de novo cases, while in GABRB2 two variants were de novo (c.992T>C, p. F331S; c.542A>T, p. Y181F) and one was autosomal dominant and inherited from the maternal side (c.990_992del, p.330_331del). We characterized the effects of these GABR variants on GABAA receptor biogenesis and channel function. We found that defects in receptor gating were the common deficiency of GABRA1 and GABRB2 Dravet syndrome variants, while mainly trafficking defects were found with the GABRG2 (c.269C>G, p. T90R) variant. It seems that variants in α1 and ß2 subunits are less tolerated than in γ2 subunits, since variant α1 and ß2 subunits express well but were functionally deficient. This suggests that all of these GABR variants are all targeting GABR genes that encode the assembled α1ß2γ2 receptor, and regardless of which of the three subunits are mutated, variants in genes coding for α1, ß2 and γ2 receptor subunits make them candidate causative genes in the pathogenesis of Dravet syndrome.

8.
Cereb Cortex ; 31(2): 768-784, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-32930324

RESUMEN

Epileptic activity in genetic generalized epilepsy (GGE) patients preferentially appears during sleep and its mechanism remains unknown. Here, we found that sleep-like slow-wave oscillations (0.5 Hz SWOs) potentiated excitatory and inhibitory synaptic currents in layer V cortical pyramidal neurons from wild-type (wt) mouse brain slices. In contrast, SWOs potentiated excitatory, but not inhibitory, currents in cortical neurons from a heterozygous (het) knock-in (KI) Gabrg2+Q/390X model of Dravet epilepsy syndrome. This created an imbalance between evoked excitatory and inhibitory currents to effectively prompt neuronal action potential firings. Similarly, physiologically similar up-/down-state induction (present during slow-wave sleep) in cortical neurons also potentiated excitatory synaptic currents within brain slices from wt and het KI mice. Moreover, this state-dependent potentiation of excitatory synaptic currents entailed some signaling pathways of homeostatic synaptic plasticity. Consequently, in het KI mice, in vivo SWO induction (using optogenetic methods) triggered generalized epileptic spike-wave discharges (SWDs), being accompanied by sudden immobility, facial myoclonus, and vibrissa twitching. In contrast, in wt littermates, SWO induction did not cause epileptic SWDs and motor behaviors. To our knowledge, this is the first mechanism to explain why epileptic SWDs preferentially happen during non rapid eye-movement sleep and quiet-wakefulness in human GGE patients.


Asunto(s)
Epilepsia Generalizada/genética , Epilepsia Generalizada/fisiopatología , Receptores de GABA-A/genética , Convulsiones/fisiopatología , Sinapsis , Ácido gamma-Aminobutírico , Potenciales de Acción , Animales , Electroencefalografía , Fenómenos Electrofisiológicos , Potenciales Postsinápticos Excitadores , Femenino , Masculino , Ratones , Movimiento , Plasticidad Neuronal , Optogenética , Transducción de Señal , Sueño , Sueño REM , Sueño de Onda Lenta , Vibrisas
9.
Epilepsia ; 61(10): 2301-2312, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32944937

RESUMEN

OBJECTIVE: Neuroinflammation is a major theme in epilepsy, which has been characterized in acquired epilepsy but is poorly understood in genetic epilepsy. γ-Aminobutyric acid type A receptor subunit gene mutations are significant causes of epilepsy, and we have studied the pathophysiology directly resulting from defective receptor channels. Here, we determined the proinflammatory factors in a genetic mouse model, the Gabrg2+/Q390X knockin (KI). We have identified increased cytokines in multiple brain regions of the KI mouse throughout different developmental stages and propose that accumulation of the trafficking-deficient mutant protein may increase neuroinflammation, which would be a novel mechanism for genetic epilepsy. METHODS: We used enzyme-linked immunosorbent assay, immunoprecipitation, nuclei purification, immunoblot, immunohistochemistry, and confocal microscopy to characterize increased neuroinflammation and its potential causes in a Gabrg2+/Q390X KI mouse and a Gabrg2+/- knockout (KO) mouse, each associated with a different epilepsy syndrome with different severities. RESULTS: We found that proinflammatory cytokines such as tumor necrosis factor alpha, interleukin 1-beta (IL-1ß), and IL-6 were increased in the KI mice but not in the KO mice. A major underlying basis for the discrepancy in cytokine expression between the two mouse models is likely chronic mutant protein accumulation and endoplasmic reticulum (ER) stress. The presence of mutant protein dampened cytokine induction upon further cellular stimulation or external stress such as elevated temperature. Pharmacological induction of ER stress upregulated cytokine expression in the wild-type and KO but not in the KI mice. The increased cytokine expression was independent of seizure occurrence, because it was upregulated in both mice and cultured neurons. SIGNIFICANCE: Together, these data demonstrate a novel pathophysiology for genetic epilepsy, increased neuroinflammation, which is a common mechanism for acquired epilepsy. The findings thus provide the first link of neuroinflammation between genetic epilepsy associated with an ion channel gene mutation and acquired epilepsy.


Asunto(s)
Citocinas/genética , Citocinas/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Epilepsia/genética , Epilepsia/metabolismo , Receptores de GABA-A/genética , Animales , Células Cultivadas , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Epilepsia/patología , Femenino , Mediadores de Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de GABA-A/deficiencia
10.
Brain Commun ; 2(1): fcaa028, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32467926

RESUMEN

The Lennox-Gastaut syndrome is a devastating early-onset epileptic encephalopathy, associated with severe behavioural abnormalities. Its pathophysiology, however, is largely unknown. A de novo mutation (c.G358A, p.D120N) in the human GABA type-A receptor ß3 subunit gene (GABRB3) has been identified in a patient with Lennox-Gastaut syndrome. To determine whether the mutation causes Lennox-Gastaut syndrome in vivo in mice and to elucidate its mechanistic effects, we generated the heterozygous Gabrb3+/D120N knock-in mouse and found that it had frequent spontaneous atypical absence seizures, as well as less frequent tonic, myoclonic, atonic and generalized tonic-clonic seizures. Each of these seizure types had a unique and characteristic ictal EEG. In addition, knock-in mice displayed abnormal behaviours seen in patients with Lennox-Gastaut syndrome including impaired learning and memory, hyperactivity, impaired social interactions and increased anxiety. This Gabrb3 mutation did not alter GABA type-A receptor trafficking or expression in knock-in mice. However, cortical neurons in thalamocortical slices from knock-in mice had reduced miniature inhibitory post-synaptic current amplitude and prolonged spontaneous thalamocortical oscillations. Thus, the Gabrb3+/D120N knock-in mouse recapitulated human Lennox-Gastaut syndrome seizure types and behavioural abnormalities and was caused by impaired inhibitory GABAergic signalling in the thalamocortical loop. In addition, treatment with antiepileptic drugs and cannabinoids ameliorated atypical absence seizures in knock-in mice. This congenic knock-in mouse demonstrates that a single-point mutation in a single gene can cause development of multiple types of seizures and multiple behavioural abnormalities. The knock-in mouse will be useful for further investigation of the mechanisms of Lennox-Gastaut syndrome development and for the development of new antiepileptic drugs and treatments.

11.
Ann Transl Med ; 8(23): 1560, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33437759

RESUMEN

BACKGROUND: Mutations in the γ-aminobutyric acid type A (GABAA) receptor γ2 subunit gene, GABRG2, have been associated frequently with epilepsy syndromes with varying severities. Recently, a de novo GABRG2 mutation, c.T1027C, p.F343L, was identified in a patient with an early onset epileptic encephalopathy (EOEE). In vitro, we demonstrated that GABAA receptors containing the mutant γ2(F343L) subunit have impaired trafficking to the cell surface. Here, we aim to validate an in vivo zebrafish model of EOEE associated with the GABRG2 mutation T1027C. METHODS: We generated a novel transgenic zebrafish (AB strain) that overexpressed mutant human γ2(F343L) subunits and provided an initial characterization of the transgenic Tg(hGABRG2F343L ) zebrafish. RESULTS: Real-time quantitative PCR and in situ hybridization identified a significant up-regulation of c-fos in the mutant transgenic zebrafish, which has a well-established role in epileptogenesis. In the larval stage 5 days postfertilization (dpf), freely swimming Tg(hGABRG2F343L ) zebrafish displayed spontaneous seizure-like behaviors consisting of whole-body shaking and hyperactivity during automated locomotion video tracking, and seizures can be induced by light stimulation. Using RNA sequencing, we investigated transcriptomic changes due to the presence of mutant γ2L(F343L) subunits and have found 524 genes that are differentially expressed, including up-regulation of 33 genes associated with protein processing. More specifically, protein network analysis indicated histone deacetylases (HDACs) as potential therapeutic targets, and suberanilohydroxamic acid (SAHA), a broad HDACs inhibitor, alleviated seizure-like phenotypes in mutant zebrafish larvae. CONCLUSIONS: Overall, our Tg(hGABRG2F343L ) overexpression zebrafish model provides the first example of a human epilepsy-associated GABRG2 mutation resulting in spontaneous seizures in zebrafish. Moreover, HDAC inhibition may be worth investigating as a therapeutic strategy for genetic epilepsies caused by missense mutations in GABRG2 and possibly in other central nervous system genes that impair surface trafficking.

12.
Curr Neuropharmacol ; 18(1): 65-82, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31560289

RESUMEN

Nimodipine is a dihydropyridine calcium channel antagonist that blocks the flux of extracellular calcium through L-type, voltage-gated calcium channels. While nimodipine is FDAapproved for the prevention and treatment of neurological deficits in patients with aneurysmal subarachnoid hemorrhage (aSAH), it affects myriad cell types throughout the body, and thus, likely has more complex mechanisms of action than simple inhibition of cerebral vasoconstriction. Newer understanding of the pathophysiology of delayed ischemic injury after a variety of acute neurologic injuries including aSAH, traumatic brain injury (TBI) and ischemic stroke, coupled with advances in the drug delivery method for nimodipine, have reignited interest in refining its potential therapeutic use. In this context, this review seeks to establish a firm understanding of current data on nimodipine's role in the mechanisms of delayed injury in aSAH, TBI, and ischemic stroke, and assess the extensive clinical data evaluating its use in these conditions. In addition, we will review pivotal trials using locally administered, sustained release nimodipine and discuss why such an approach has evaded demonstration of efficacy, while seemingly having the potential to significantly improve clinical care.


Asunto(s)
Lesiones Encefálicas/tratamiento farmacológico , Bloqueadores de los Canales de Calcio/uso terapéutico , Nimodipina/uso terapéutico , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Isquemia Encefálica/tratamiento farmacológico , Humanos , Nimodipina/farmacología , Accidente Cerebrovascular/tratamiento farmacológico
13.
Brain ; 142(10): 3028-3044, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31435640

RESUMEN

GABRB3 is highly expressed early in the developing brain, and its encoded ß3 subunit is critical for GABAA receptor assembly and trafficking as well as stem cell differentiation in embryonic brain. To date, over 400 mutations or variants have been identified in GABRB3. Mutations in GABRB3 have been increasingly recognized as a major cause for severe paediatric epilepsy syndromes such as Lennox-Gastaut syndrome, Dravet syndrome and infantile spasms with intellectual disability as well as relatively mild epilepsy syndromes such as childhood absence epilepsy. There is no plausible molecular pathology for disease phenotypic heterogeneity. Here we used a very high-throughput flow cytometry assay to evaluate the impact of multiple human mutations in GABRB3 on receptor trafficking. In this study we found that surface expression of mutant ß3 subunits is variable. However, it was consistent that surface expression of partnering γ2 subunits was lower when co-expressed with mutant than with wild-type subunits. Because γ2 subunits are critical for synaptic GABAA receptor clustering, this provides an important clue for understanding the pathophysiology of GABRB3 mutations. To validate our findings further, we obtained an in-depth comparison of two novel mutations [GABRB3 (N328D) and GABRB3 (E357K)] associated with epilepsy with different severities of epilepsy phenotype. GABRB3 (N328D) is associated with the relatively severe Lennox-Gastaut syndrome, and GABRB3 (E357K) is associated with the relatively mild juvenile absence epilepsy syndrome. With functional characterizations in both heterologous cells and rodent cortical neurons by patch-clamp recordings, confocal microscopy and immunoblotting, we found that both the GABRB3 (N328D) and GABRB3 (E357K) mutations reduced total subunit expression in neurons but not in HEK293T cells. Both mutant subunits, however, were reduced on the cell surface and in synapses, but the Lennox-Gastaut syndrome mutant ß3 (N328D) subunit was more reduced than the juvenile absence epilepsy mutant ß3 (E357K) subunit. Interestingly, both mutant ß3 subunits impaired postsynaptic clustering of wild-type GABAA receptor γ2 subunits and prevented γ2 subunits from incorporating into GABAA receptors at synapses, although by different cellular mechanisms. Importantly, wild-type γ2 subunits were reduced and less clustered at inhibitory synapses in Gabrb3+/- knockout mice. This suggests that impaired receptor localization to synapses is a common pathophysiological mechanism for GABRB3 mutations, although the extent of impairment may be different among mutant subunits. The study thus identifies the novel mechanism of impaired targeting of receptors containing mutant ß3 subunits and provides critical insights into understanding how GABRB3 mutations produce severe epilepsy syndromes and epilepsy phenotypic heterogeneity.


Asunto(s)
Epilepsia/genética , Receptores de GABA-A/genética , Animales , Encéfalo/embriología , Línea Celular , Membrana Celular/metabolismo , Niño , Preescolar , Análisis por Conglomerados , Epilepsia/metabolismo , Síndromes Epilépticos/genética , Femenino , Citometría de Flujo/métodos , Células HEK293 , Humanos , Masculino , Potenciales de la Membrana/fisiología , Ratones , Ratones Noqueados , Mutación/genética , Técnicas de Placa-Clamp , Fenotipo , Subunidades de Proteína/genética , Transporte de Proteínas , Ratas , Receptores de GABA-A/metabolismo
14.
Epilepsia ; 60(6): 1137-1149, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31087664

RESUMEN

OBJECTIVE: γ-Aminobutyric acid type A (GABAA ) receptor subunit gene mutations are significant causes of epilepsy, which are often accompanied by various neuropsychiatric comorbidities, but the underlying mechanisms are unclear. It has been suggested that the comorbidities are caused by seizures, as the comorbidities often present in severe epilepsy syndromes. However, findings from both humans and animal models argue against this conclusion. Mutations in the GABAA receptor γ2 subunit gene GABRG2 have been associated with anxiety alone or with severe epilepsy syndromes and comorbid anxiety, suggesting that a core molecular defect gives rise to the phenotypic spectrum. Here, we determined the pathophysiology of comorbid anxiety in GABRG2 loss-of-function epilepsy syndromes, identified the central nucleus of the amygdala (CeA) as a primary site for epilepsy comorbid anxiety, and demonstrated a potential rescue of comorbid anxiety via neuromodulation of CeA neurons. METHODS: We used brain slice recordings, subcellular fractionation with Western blot, immunohistochemistry, confocal microscopy, and a battery of behavior tests in combination with a chemogenetic approach to characterize anxiety and its underlying mechanisms in a Gabrg2+/Q390X knockin mouse and a Gabrg2+/- knockout mouse, each associated with a different epilepsy syndrome. RESULTS: We found that impaired GABAergic neurotransmission in CeA underlies anxiety in epilepsy, which is due to reduced GABAA receptor subunit expression resulting from the mutations. Impaired GABAA receptor expression reduced GABAergic neurotransmission in CeA, but not in basolateral amygdala. Activation or inactivation of inhibitory neurons using a chemogenetic approach in CeA alone modulated anxietylike behaviors. Similarly, pharmacological enhancement of GABAergic signaling via γ2 subunit-containing receptors relieved the anxiety. SIGNIFICANCE: Together, these data demonstrate the molecular basis for a comorbidity of epilepsy, anxiety, and suggest that impaired GABAA receptor function in CeA due to a loss-of-function mutation could at least contribute to anxiety. Modulation of CeA neurons could cause or suppress anxiety, suggesting a potential use of CeA neurons as therapeutic targets for treatment of anxiety in addition to traditional pharmacological approaches.


Asunto(s)
Amígdala del Cerebelo/fisiopatología , Ansiedad/complicaciones , Ansiedad/genética , Epilepsia/complicaciones , Epilepsia/genética , Receptores de GABA-A/genética , Amígdala del Cerebelo/efectos de los fármacos , Animales , Ansiolíticos/farmacología , Ansiedad/tratamiento farmacológico , Conducta Animal , Comorbilidad , Electroencefalografía , Epilepsia/fisiopatología , Potenciales Postsinápticos Excitadores , Humanos , Ratones , Ratones Noqueados , Neuronas/efectos de los fármacos , Receptores de GABA-A/deficiencia , Transmisión Sináptica , Ácido gamma-Aminobutírico/fisiología
15.
Brain ; 142(7): 1938-1954, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31056671

RESUMEN

We performed next generation sequencing on 1696 patients with epilepsy and intellectual disability using a gene panel with 480 epilepsy-related genes including all GABAA receptor subunit genes (GABRs), and we identified six de novo GABR mutations, two novel GABRA5 mutations (c.880G>T, p.V294F and c.1238C>T, p.S413F), two novel GABRA1 mutations (c.778C>T, p.P260S and c.887T>C, p.L296S/c.944G>T, p.W315L) and two known GABRA1 mutations (c.335G>A, p.R112Q and c.343A>G, p.N115D) in six patients with intractable early onset epileptic encephalopathy. The α5(V294F and S413F) and α1(P260S and L296S/W315L) subunit residue substitutions were all in transmembrane domains, while the α1(R112Q and N115R) subunit residue substitutions were in the N-terminal GABA binding domain. Using multidisciplinary approaches, we compared effects of mutant GABAA receptor α5 and α1 subunits on the properties of recombinant α5ß3γ2 and α1ß3γ2 GABAA receptors in both neuronal and non-neuronal cells and characterized their effects on receptor clustering, biogenesis and channel function. GABAA receptors containing mutant α5 and α1 subunits all had reduced cell surface and total cell expression with altered endoplasmic reticulum processing, impaired synaptic clustering, reduced GABAA receptor function and decreased GABA binding potency. Our study identified GABRA5 as a causative gene for early onset epileptic encephalopathy and expands the mutant GABRA1 phenotypic spectrum, supporting growing evidence that defects in GABAergic neurotransmission contribute to early onset epileptic encephalopathy phenotypes.


Asunto(s)
Epilepsia/genética , Discapacidad Intelectual/genética , Receptores de GABA-A/genética , Sinapsis/genética , Niño , Preescolar , Epilepsia/complicaciones , Femenino , Predisposición Genética a la Enfermedad/genética , Humanos , Discapacidad Intelectual/complicaciones , Masculino , Potenciales de la Membrana/fisiología , Potenciales Postsinápticos Miniatura/fisiología , Mutación , Cultivo Primario de Células , Receptores de GABA-A/biosíntesis , Receptores de GABA-A/metabolismo , Receptores de GABA-A/fisiología , Sinapsis/fisiología , Adulto Joven , Ácido gamma-Aminobutírico/metabolismo
16.
Brain Res ; 1714: 234-247, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30851244

RESUMEN

Understanding the genetic variation in GABAA receptor subunit genes (GABRs), GABRA1-6, GABRB1-3, GABRG1-3 and GABRD, in individuals affected by epilepsy may improve the diagnosis and treatment of epilepsy syndromes through identification of disease-associated variants. However, the lack of functional analysis and validation of many novel and previously reported familial and de novo mutations have made it challenging to address meaningful gene associations with epilepsy syndromes. GABAA receptors belong to the Cys-loop receptor family. Even though GABAA receptor mutant residues are widespread among different GABRs, their frequent occurrence in important structural domains that share common functional features suggests associations between structure and function.


Asunto(s)
Síndromes Epilépticos/genética , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Epilepsia/genética , Epilepsia/fisiopatología , Síndromes Epilépticos/metabolismo , Síndromes Epilépticos/fisiopatología , Humanos , Mutación/genética , Receptores de GABA-A/fisiología , Relación Estructura-Actividad
17.
J Physiol ; 596(18): 4475-4495, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30019335

RESUMEN

KEY POINTS: Physiologically relevant combinations of recombinant GABAA receptor (GABAR) subunits were expressed in HEK293 cells. Using whole-cell voltage clamp and rapid drug application, we measured the GABAR-subtype-specific properties to convey either synaptic or extrasynaptic signalling in a range of physiological contexts. α4ßδ GABARs are optimally tuned to submicromolar tonic GABA and transient surges of micromolar GABA concentrations. α5ß2γ2l GABARs are better suited to higher tonic GABA levels, but also convey robust responses to brief synaptic and perisynaptic GABA fluctuations. α1ß2/3δ GABARs function well at prolonged, micromolar (>2 µm) GABA levels, but not to low tonic (<1 µm GABA) or synaptic/transient GABAergic signalling. These results help illuminate the context- and isoform-specific modes of GABAergic signalling in the brain. ABSTRACT: GABAA receptors (GABARs) mediate a remarkable diversity of signalling modalities in vivo. Yet most published work characterizing responses to GABA has focused on the properties needed to convey fast, phasic synaptic inhibition. We therefore aimed to characterize the most prevalent (α4ßδ, α5ß3γ2L) and least prevalent (α1ß2δ) non-synaptic GABAR currents, using whole-cell voltage clamp recordings of recombinant GABAR expressed in HEK293 cells and drug application protocols to recapitulate the GABA concentration profiles occurring during both fast synaptic and slow extrasynaptic signalling. We found that α4ßδ GABARs were very sensitive to submicromolar GABA, with a rank order potency of α4ß2δ ≥ α4ß1δ ≈ α4ß3δ GABARs. In comparison, the GABA EC50 was up to 20 times higher for α1ß2γ2L GABARs, with α1ß2δ and α5ß3γ2L GABARs having intermediate GABA potency. Both α4ßδ and α5ß3γ2L GABAR currents exhibited slow, but substantial, desensitization as well as prolonged rates of deactivation. These GABAR current properties defined distinct 'dynamic ranges' of responsiveness to changing GABA for α4ß2δ (0.1-1 µm), α5ß3γ2L (0.5-7 µm) and α1ß2γ2L (0.6-9 µm) GABARs. Finally, α1ß2δ GABARs were notable for their relative lack of desensitization and extremely quick deactivation. In summary, our results help delineate the roles that specific GABARs may play in mediating non-synaptic GABA signals. Since ambient GABA levels may be altered during development as well as by drugs and disease states, these findings may help future efforts to understand disrupted inhibition underlying a variety of neurological illnesses, such as epilepsy.


Asunto(s)
Receptores de GABA-A/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , GABAérgicos/farmacología , Células HEK293 , Humanos , Isoformas de Proteínas/metabolismo , Ratas , Receptores de GABA-A/química , Ácido gamma-Aminobutírico/farmacología
18.
Neurosci Lett ; 684: 115-120, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30003937

RESUMEN

OBJECTIVE: We report a large new family of familial cortical myoclonic tremor with epilepsy(FCMTE) from China and identify the possible causative gene(s) for the family. METHOD: Whole exome sequencing of blood genomic DNA from 4 patients and 2 unaffected family members were performed. Detected variants and their cosegregation were confirmed by Sanger sequencing. RESULTS: We identified c.20 G > C variant in the DCAF13 gene and c.983 T > C variant in the NOV gene cosegregating in the family. There was no additional cross-over in the family to narrow to one gene. The two DCAF13 and NOV gene variants are located on 8q23.3 and 8q24.12, which is consistent with the location 8q23.3-q24.13 reported previously for a group of Japanese families. The DCAF13 variant is located in alternative transcription start site(TSS) and the function of alternative TSS is unknown. The missense NOV variant is near the C terminus in a site that is highly conserved across species. It was predicted to be deleterious on protein function. CONCLUSIONS: In this study, we identify two novel variants in the DCAF13 and NOV genes associated with FCMTE in Asian populations. The interval between two variants is 15.6Mb, which is very close to each other. Future studies of additional families with this phenotype are warranted to confirm whether it is rare bigenic or monogenic inheritance.


Asunto(s)
Pueblo Asiatico/genética , Epilepsias Mioclónicas/genética , Secuenciación del Exoma/métodos , Variación Genética/genética , Proteína Hiperexpresada del Nefroblastoma/genética , Proteínas de Unión al ARN/genética , Adulto , Anciano , Secuencia de Aminoácidos , Epilepsias Mioclónicas/diagnóstico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Linaje , Adulto Joven
19.
ACS Chem Neurosci ; 9(11): 2534-2541, 2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29787674

RESUMEN

Serotonin transporter (SERT) terminates serotonin signaling in the brain by enabling rapid clearance of the neurotransmitter. SERT dysfunction has been associated with a variety of psychiatric disorders, including depression, anxiety, and autism. Visualizing SERT behavior at the single molecule level in endogenous systems remains a challenge. In this study, we utilize quantum dot (QD) single particle tracking (SPT) to capture SERT dynamics in primary rat midbrain neurons. Membrane microenvironment, specifically membrane cholesterol, plays a key role in SERT regulation and has been found to affect SERT conformational state. We sought to determine how reduced cholesterol content affects both lateral mobility and phosphorylation of conformationally sensitive threonine 276 (Thr276) in endogenous SERT using two different methods of cholesterol manipulation, statins and methyl-ß-cyclodextrin. Both chronic and acute cholesterol depletion increased SERT lateral diffusion, radial displacement along the membrane, mobile fraction, and Thr276 phosphorylation levels. Overall, this work has provided new insights about endogenous neuronal SERT mobility and its associations with membrane cholesterol and SERT phosphorylation status.


Asunto(s)
Colesterol/metabolismo , Neuronas/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Membrana Celular/efectos de los fármacos , Proteínas Quinasas Dependientes de GMP Cíclico/efectos de los fármacos , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Mesencéfalo/citología , Neuronas/efectos de los fármacos , Fosforilación , Puntos Cuánticos , Proteínas de Unión al ARN/efectos de los fármacos , Ratas , Treonina/metabolismo , beta-Ciclodextrinas/farmacología
20.
J Neurosci ; 38(11): 2818-2831, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29440552

RESUMEN

Hyperekplexia, an inherited neuronal disorder characterized by exaggerated startle responses with unexpected sensory stimuli, is caused by dysfunction of glycinergic inhibitory transmission. From analysis of newly identified human hyperekplexia mutations in the glycine receptor (GlyR) α1 subunit, we found that an alanine-to-proline missense mutation (A384P) resulted in substantially higher desensitization level and lower agonist sensitivity of homomeric α1 GlyRs when expressed in HEK cells. The incorporation of the ß subunit fully reversed the reduction in agonist sensitivity and partially reversed the desensitization of α1A384P The heteromeric α1A384Pß GlyRs showed enhanced desensitization but unchanged agonist-induced maximum responses, surface expression, main channel conductance, and voltage dependence compared with that of the wild-type α1ß (α1WTß) GlyRs. Coexpression of the R392H and A384P mutant α1 subunits, which mimic the expression of the compound heterozygous mutation in a hyperekplexia patient, resulted in channel properties similar to those with α1A384P subunit expression alone. In comparison, another human hyperekplexia mutation α1P250T, which was previously reported to enhance desensitization, caused a strong reduction in maximum currents in addition to the altered desensitization. These results were further confirmed by overexpression of α1P250T or α1A384P subunits in cultured neurons isolated from SD rats of either sex. Moreover, the IPSC-like responses of cells expressing α1A384Pß induced by repeated glycine pulses showed a stronger frequency-dependent reduction than those expressing α1WTß. Together, our findings demonstrate that A384 is associated with the desensitization site of the α1 subunit and its proline mutation produced enhanced desensitization of GlyRs, which contributes to the pathogenesis of human hyperekplexia.SIGNIFICANCE STATEMENT Human startle disease is caused by impaired synaptic inhibition in the brainstem and spinal cord, which is due to either direct loss of GlyR channel function or reduced number of synaptic GlyRs. Considering that fast decay kinetics of GlyR-mediated inhibitory synaptic responses, the question was raised whether altered desensitization of GlyRs will cause dysfunction of glycine transmission and disease phenotypes. Here, we found that the α1 subunit mutation A384P, identified from startle disease patients, results in enhanced desensitization and leads to rapidly decreasing responses in the mutant GlyRs when they are activated repeatedly by the synaptic-like simulation. These observations suggest that the enhanced desensitization of postsynaptic GlyRs could be the primary pathogenic mechanism of human startle disease.


Asunto(s)
Rigidez Muscular/genética , Mutación Missense/genética , Receptores de Glicina/genética , Animales , Biotinilación , Células Cultivadas , Potenciales Postsinápticos Excitadores/genética , Femenino , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Glicina/farmacología , Células HEK293 , Humanos , Masculino , Técnicas de Placa-Clamp , Prolina/genética , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA