Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Endocrinol ; 261(2)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38451877

RESUMEN

Glucocorticoids are steroid hormones, secreted by the adrenals to regulate a range of metabolic, immunologic, and homeostatic functions. Due to their potent anti-inflammatory effects, synthetic glucocorticoids are widely used to treat inflammatory disorders. However, their use especially at high doses and over the long-term is associated with several unwanted side effects that compromises their intended use (e.g. glucocorticoid-induced osteoporosis and/or diabetes, myopathy, and skin atrophy). Both endogenous and synthetic glucocorticoids exert their effects through the glucocorticoid receptor, a transcription factor present in nearly all nucleated cells. Glucocorticoid receptor knockout mouse models have proved to be valuable tools in understanding how glucocorticoids contribute to skeletal health and disease. These models, described in this review, have helped to establish that the effects of glucocorticoids on the skeleton are multifaceted, cell specific and concentration dependent. Intriguingly, while endogenous glucocorticoids are essential for bone formation, high-dose exogenous glucocorticoids may induce bone loss. Additionally, the actions of endogenous glucocorticoids vary greatly depending on the disease microenvironment. For example, endogenous glucocorticoids have predominately beneficial anti-inflammatory effects in rheumatoid arthritis, but detrimental actions in osteoarthritis by driving cartilage loss and abnormal bone formation. Studies in tissue-specific knockout models provide important insights that will aid the development of new glucocorticoid therapeutics that can specifically target certain cell types to minimise unwanted effects from current glucocorticoid therapy.


Asunto(s)
Osteoporosis , Receptores de Glucocorticoides , Animales , Ratones , Antiinflamatorios , Glucocorticoides/efectos adversos , Ratones Noqueados , Osteoporosis/inducido químicamente , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
2.
Osteoarthritis Cartilage ; 31(9): 1189-1201, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37105394

RESUMEN

OBJECTIVE: Disruption of endogenous glucocorticoid signalling in bone cells attenuates osteoarthritis (OA) in aged mice, however, the role of endogenous glucocorticoids in chondrocytes is unknown. Here, we investigated whether deletion of the glucocorticoid receptor, specifically in chondrocytes, also alters OA progression. DESIGN: Knee OA was induced by surgical destabilisation of the medial meniscus (DMM) in male 22-week-old tamoxifen-inducible glucocorticoid receptor knockout (chGRKO) mice and their wild-type (WT) littermates (n = 7-9/group). Mice were harvested 2, 4, 8 and 16 weeks after surgery to examine the spatiotemporal changes in molecular, cellular, and histological characteristics. RESULTS: At all time points following DMM, cartilage damage was significantly attenuated in chGRKO compared to WT mice. Two weeks after DMM, WT mice exhibited increased chondrocyte and synoviocyte hypoxia inducible factor (HIF)-2α expression resulting in extensive synovial activation characterised by synovial thickening and increased interleukin-1 beta expression. At 2 and 4 weeks after DMM, WT mice displayed pronounced chondrocyte senescence and elevated catabolic signalling (reduced Yes-associated protein 1 (YAP1) and increased matrix metalloprotease [MMP]-13 expression). Contrastingly, at 2 weeks after DMM, HIF-2α expression and synovial activation were much less pronounced in chGRKO than in WT mice. Furthermore, chondrocyte YAP1 and MMP-13 expression, as well as chondrocyte senescence were similar in chGRKO-DMM mice and sham-operated controls. CONCLUSION: Endogenous glucocorticoid signalling in chondrocytes promotes synovial activation, chondrocyte senescence and cartilage degradation by upregulation of catabolic signalling through HIF-2α in murine posttraumatic OA. These findings indicate that inhibition of glucocorticoid signalling early after injury may present a promising way to slow osteoarthritic cartilage degeneration.


Asunto(s)
Cartílago Articular , Osteoartritis de la Rodilla , Receptores de Glucocorticoides , Animales , Masculino , Ratones , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Cartílago Articular/patología , Condrocitos/metabolismo , Modelos Animales de Enfermedad , Glucocorticoides , Meniscos Tibiales/cirugía , Meniscos Tibiales/metabolismo , Osteoartritis de la Rodilla/patología , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
3.
Bone Res ; 9(1): 40, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34465731

RESUMEN

Chronic high-fat diet (HFD) consumption not only promotes obesity and insulin resistance, but also causes bone loss through mechanisms that are not well understood. Here, we fed wild-type CD-1 mice either chow or a HFD (43% of energy from fat) for 18 weeks; HFD-fed mice exhibited decreased trabecular volume (-28%) and cortical thickness (-14%) compared to chow-fed mice. In HFD-fed mice, bone loss was due to reduced bone formation and mineral apposition, without obvious effects on bone resorption. HFD feeding also increased skeletal expression of sclerostin and caused deterioration of the osteocyte lacunocanalicular network (LCN). In mice fed HFD, skeletal glucocorticoid signaling was activated relative to chow-fed mice, independent of serum corticosterone concentrations. We therefore examined whether skeletal glucocorticoid signaling was necessary for HFD-induced bone loss, using transgenic mice lacking glucocorticoid signaling in osteoblasts and osteocytes (HSD2OB/OCY-tg mice). In HSD2OB/OCY-tg mice, bone formation and mineral apposition rates were not suppressed by HFD, and bone loss was significantly attenuated. Interestingly, in HSD2OB/OCY-tg mice fed HFD, both Wnt signaling (less sclerostin induction, increased ß-catenin expression) and glucose uptake were significantly increased, relative to diet- and genotype-matched controls. The osteocyte LCN remained intact in HFD-fed HSD2OB/OCY-tg mice. When fed a HFD, HSD2OB/OCY-tg mice also increased their energy expenditure and were protected against obesity, insulin resistance, and dyslipidemia. Therefore, glucocorticoid signaling in osteoblasts and osteocytes contributes to the suppression of bone formation in HFD-fed mice. Skeletal glucocorticoid signaling is also an important determinant of glucose uptake in bone, which influences the whole-body metabolic response to HFD.

4.
Bone Res ; 8: 33, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32963891

RESUMEN

Rheumatoid arthritis and osteoarthritis, the most common forms of arthritis, are chronic, painful, and disabling conditions. Although both diseases differ in etiology, they manifest in progressive joint destruction characterized by pathological changes in the articular cartilage, bone, and synovium. While the potent anti-inflammatory properties of therapeutic (i.e., exogenous) glucocorticoids have been heavily researched and are widely used in clinical practice, the role of endogenous glucocorticoids in arthritis susceptibility and disease progression remains poorly understood. Current evidence from mouse models suggests that local endogenous glucocorticoid signaling is upregulated by the pro-inflammatory microenvironment in rheumatoid arthritis and by aging-related mechanisms in osteoarthritis. Furthermore, these models indicate that endogenous glucocorticoid signaling in macrophages, mast cells, and chondrocytes has anti-inflammatory effects, while signaling in fibroblast-like synoviocytes, myocytes, osteoblasts, and osteocytes has pro-inflammatory actions in rheumatoid arthritis. Conversely, in osteoarthritis, endogenous glucocorticoid signaling in both osteoblasts and chondrocytes has destructive actions. Together these studies provide insights into the role of endogenous glucocorticoids in the pathogenesis of both inflammatory and degenerative joint disease.

5.
J Bone Miner Res ; 34(9): 1721-1732, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30995345

RESUMEN

Expression of the vitamin D receptor (VDR) is thought to be associated with neoplastic progression. However, the role of the VDR in breast cancer metastasis to bone and the molecular mechanisms underlying this process are unknown. Employing a rodent model (female Balb/c nu/nu mice) of systemic metastasis, we here demonstrate that knockdown of the VDR strongly increases the metastatic potential of MDA-MB-231 human breast cancer cells to bone, resulting in significantly greater skeletal tumor burden. Ablation of VDR expression promotes cancer cell mobility (migration) and invasiveness, thereby facilitating skeletal colonization. Mechanistically, these changes in tumor cell behavior are attributable to shifts in the expression of proteins involved in cell adhesion, proliferation, and cytoskeletal organization, patterns characteristic for epithelial-to-mesenchymal cell transition (EMT). In keeping with these experimental findings, analyses of human breast cancer specimens corroborated the association between VDR expression, EMT-typical changes in protein expression patterns, and clinical prognosis. Loss of the VDR in human breast cancer cells marks a critical point in oncogenesis by inducing EMT, promoting the dissemination of cancer cells, and facilitating the formation of tumor colonies in bone. © 2019 American Society for Bone and Mineral Research.


Asunto(s)
Huesos/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Transición Epitelial-Mesenquimal , Receptores de Calcitriol/deficiencia , Animales , Neoplasias Óseas/secundario , Línea Celular Tumoral , Movimiento Celular , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Clasificación del Tumor , Invasividad Neoplásica , Receptores de Calcitriol/metabolismo , Carga Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA