Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 11(3)2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38534494

RESUMEN

Kidney disease remains one of the most common ailments worldwide, with cancer being one of its most common forms. Early diagnosis can significantly increase the good prognosis for the patient. The development of an artificial intelligence-based system to assist in kidney cancer diagnosis is crucial because kidney illness is a global health concern, and there are limited nephrologists qualified to evaluate kidney cancer. Diagnosing and categorising different forms of renal failure presents the biggest treatment hurdle for kidney cancer. Thus, this article presents a novel method for detecting and classifying kidney cancer subgroups in Computed Tomography (CT) images based on an asymmetric local statistical pixel distribution. In the first step, the input image is non-overlapping windowed, and a statistical distribution of its pixels in each cancer type is built. Then, the method builds the asymmetric statistical distribution of the image's gradient pixels. Finally, the cancer type is identified by applying the two built statistical distributions to a Deep Neural Network (DNN). The proposed method was evaluated using a dataset collected and authorised by the Dhaka Central International Medical Hospital in Bangladesh, which includes 12,446 CT images of the whole abdomen and urogram, acquired with and without contrast. Based on the results, it is possible to confirm that the proposed method outperformed state-of-the-art methods in terms of the usual correctness criteria. The accuracy of the proposed method for all kidney cancer subtypes presented in the dataset was 99.89%, which is promising.

2.
Sensors (Basel) ; 22(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36559937

RESUMEN

Heart sounds convey important information regarding potential heart diseases. Currently, heart sound classification attracts many researchers from the fields of telemedicine, digital signal processing, and machine learning-among others-mainly to identify cardiac pathology as quickly as possible. This article proposes chaogram as a new transform to convert heart sound signals to colour images. In the proposed approach, the output image is, therefore, the projection of the reconstructed phase space representation of the phonocardiogram (PCG) signal on three coordinate planes. This has two major benefits: (1) it makes possible to apply deep convolutional neural networks to heart sounds and (2) it is also possible to employ a transfer learning scheme by converting a heart sound signal to an image. The performance of the proposed approach was verified on the PhysioNet dataset. Due to the imbalanced data on this dataset, it is common to assess the results quality using the average of sensitivity and specificity, which is known as score, instead of accuracy. In this study, the best results were achieved using the InceptionV3 model, which achieved a score of 88.06%.


Asunto(s)
Cardiopatías , Ruidos Cardíacos , Humanos , Redes Neurales de la Computación , Procesamiento de Señales Asistido por Computador , Aprendizaje Automático
3.
Sensors (Basel) ; 22(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36433204

RESUMEN

Audio recognition can be used in smart cities for security, surveillance, manufacturing, autonomous vehicles, and noise mitigation, just to name a few. However, urban sounds are everyday audio events that occur daily, presenting unstructured characteristics containing different genres of noise and sounds unrelated to the sound event under study, making it a challenging problem. Therefore, the main objective of this literature review is to summarize the most recent works on this subject to understand the current approaches and identify their limitations. Based on the reviewed articles, it can be realized that Deep Learning (DL) architectures, attention mechanisms, data augmentation techniques, and pretraining are the most crucial factors to consider while creating an efficient sound classification model. The best-found results were obtained by Mushtaq and Su, in 2020, using a DenseNet-161 with pretrained weights from ImageNet, and NA-1 and NA-2 as augmentation techniques, which were of 97.98%, 98.52%, and 99.22% for UrbanSound8K, ESC-50, and ESC-10 datasets, respectively. Nonetheless, the use of these models in real-world scenarios has not been properly addressed, so their effectiveness is still questionable in such situations.


Asunto(s)
Ruido , Sonido , Publicaciones , Ciudades
4.
Sensors (Basel) ; 22(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36433471

RESUMEN

Many relevant sound events occur in urban scenarios, and robust classification models are required to identify abnormal and relevant events correctly. These models need to identify such events within valuable time, being effective and prompt. It is also essential to determine for how much time these events prevail. This article presents an extensive analysis developed to identify the best-performing model to successfully classify a broad set of sound events occurring in urban scenarios. Analysis and modelling of Transformer models were performed using available public datasets with different sets of sound classes. The Transformer models' performance was compared to the one achieved by the baseline model and end-to-end convolutional models. Furthermore, the benefits of using pre-training from image and sound domains and data augmentation techniques were identified. Additionally, complementary methods that have been used to improve the models' performance and good practices to obtain robust sound classification models were investigated. After an extensive evaluation, it was found that the most promising results were obtained by employing a Transformer model using a novel Adam optimizer with weight decay and transfer learning from the audio domain by reusing the weights from AudioSet, which led to an accuracy score of 89.8% for the UrbanSound8K dataset, 95.8% for the ESC-50 dataset, and 99% for the ESC-10 dataset, respectively.


Asunto(s)
Sonido
5.
Sensors (Basel) ; 22(14)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35890966

RESUMEN

The crowd counting task has become a pillar for crowd control as it provides information concerning the number of people in a scene. It is helpful in many scenarios such as video surveillance, public safety, and future event planning. To solve such tasks, researchers have proposed different solutions. In the beginning, researchers went with more traditional solutions, while recently the focus is on deep learning methods and, more specifically, on Convolutional Neural Networks (CNNs), because of their efficiency. This review explores these methods by focusing on their key differences, advantages, and disadvantages. We have systematically analyzed algorithms and works based on the different models suggested and the problems they are trying to solve. The main focus is on the shift made in the history of crowd counting methods, moving from the heuristic models to CNN models by identifying each category and discussing its different methods and architectures. After a deep study of the literature on crowd counting, the survey partitions current datasets into sparse and crowded ones. It discusses the reviewed methods by comparing their results on the different datasets. The findings suggest that the heuristic models could be even more effective than the CNN models in sparse scenarios.


Asunto(s)
Heurística , Redes Neurales de la Computación , Algoritmos , Humanos , Publicaciones
6.
Sensors (Basel) ; 22(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35746325

RESUMEN

Requests for caring for and monitoring the health and safety of older adults are increasing nowadays and form a topic of great social interest. One of the issues that lead to serious concerns is human falls, especially among aged people. Computer vision techniques can be used to identify fall events, and Deep Learning methods can detect them with optimum accuracy. Such imaging-based solutions are a good alternative to body-worn solutions. This article proposes a novel human fall detection solution based on the Fast Pose Estimation method. The solution uses Time-Distributed Convolutional Long Short-Term Memory (TD-CNN-LSTM) and 1Dimentional Convolutional Neural Network (1D-CNN) models, to classify the data extracted from image frames, and achieved high accuracies: 98 and 97% for the 1D-CNN and TD-CNN-LSTM models, respectively. Therefore, by applying the Fast Pose Estimation method, which has not been used before for this purpose, the proposed solution is an effective contribution to accurate human fall detection, which can be deployed in edge devices due to its low computational and memory demands.


Asunto(s)
Redes Neurales de la Computación , Anciano , Humanos
7.
Sensors (Basel) ; 22(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35591111

RESUMEN

The attitude and heading reference system (AHRS) is an important concept in the area of navigation, image stabilization, and object detection and tracking. Many studies and works have been conducted in this regard to estimate the accurate orientation of rigid bodies. In most research in this area, low-cost MEMS sensors are employed, but since the system's response will diverge over time due to integration drift, it is necessary to apply proper estimation algorithms. A two-step extended Kalman Filter (EKF) algorithm is used in this study to estimate the orientation of an IMU. A 9-DOF device is used for this purpose, including a 6-DOF IMU with a three-axis gyroscope and a three-axis accelerometer, and a three-axis magnetometer. In addition, to have an accurate algorithm, both IMU and magnetometer biases and disturbances are modeled and considered in the real-time filter. After applying the algorithm to the sensor's output, an accurate orientation as well as unbiased angular velocity, linear acceleration, and magnetic field were achieved. In order to demonstrate the reduction of noise power, fast Fourier transform (FFT) diagrams are used. The effect of the initial condition on the response of the system is also investigated.


Asunto(s)
Aceleración , Algoritmos , Sesgo , Cuerpo Humano , Campos Magnéticos
8.
Sensors (Basel) ; 22(4)2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35214436

RESUMEN

The analysis of ambient sounds can be very useful when developing sound base intelligent systems. Acoustic scene classification (ASC) is defined as identifying the area of a recorded sound or clip among some predefined scenes. ASC has huge potential to be used in urban sound event classification systems. This research presents a hybrid method that includes a novel mathematical fusion step which aims to tackle the challenges of ASC accuracy and adaptability of current state-of-the-art models. The proposed method uses a stereo signal, two ensemble classifiers (random subspace), and a novel mathematical fusion step. In the proposed method, a stable, invariant signal representation of the stereo signal is built using Wavelet Scattering Transform (WST). For each mono, i.e., left and right, channel, a different random subspace classifier is trained using WST. A novel mathematical formula for fusion step was developed, its parameters being found using a Genetic algorithm. The results on the DCASE 2017 dataset showed that the proposed method has higher classification accuracy (about 95%), pushing the boundaries of existing methods.


Asunto(s)
Acústica , Análisis de Ondículas , Algoritmos , Sonido
9.
Sensors (Basel) ; 21(22)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34833584

RESUMEN

Weakly supervised video anomaly detection is a recent focus of computer vision research thanks to the availability of large-scale weakly supervised video datasets. However, most existing research works are limited to the frame-level classification with emphasis on finding the presence of specific objects or activities. In this article, a new neural network architecture is proposed to efficiently extract the prominent features for detecting whether a video contains anomalies. A video is treated as an integral input and the detection follows the procedure of video-label assignment. The extraction of spatial and temporal features is carried out by three-dimensional convolutions, and then their relationship is further modeled using an LSTM network. The concise structure of the proposed method enables high computational efficiency, and extensive experiments demonstrate its effectiveness.


Asunto(s)
Redes Neurales de la Computación
10.
Sensors (Basel) ; 21(22)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34833794

RESUMEN

With the rapid growth and development of cities, Intelligent Traffic Management and Control (ITMC) is becoming a fundamental component to address the challenges of modern urban traffic management, where a wide range of daily problems need to be addressed in a prompt and expedited manner. Issues such as unpredictable traffic dynamics, resource constraints, and abnormal events pose difficulties to city managers. ITMC aims to increase the efficiency of traffic management by minimizing the odds of traffic problems, by providing real-time traffic state forecasts to better schedule the intersection signal controls. Reliable implementations of ITMC improve the safety of inhabitants and the quality of life, leading to economic growth. In recent years, researchers have proposed different solutions to address specific problems concerning traffic management, ranging from image-processing and deep-learning techniques to forecasting the traffic state and deriving policies to control intersection signals. This review article studies the primary public datasets helpful in developing models to address the identified problems, complemented with a deep analysis of the works related to traffic state forecast and intersection-signal-control models. Our analysis found that deep-learning-based approaches for short-term traffic state forecast and multi-intersection signal control showed reasonable results, but lacked robustness for unusual scenarios, particularly during oversaturated situations, which can be resolved by explicitly addressing these cases, potentially leading to significant improvements of the systems overall. However, there is arguably a long path until these models can be used safely and effectively in real-world scenarios.


Asunto(s)
Aprendizaje Profundo , Predicción , Procesamiento de Imagen Asistido por Computador , Calidad de Vida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA