Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(16): e2317783121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38588430

RESUMEN

GABAergic inhibitory interneurons, originating from the embryonic ventral forebrain territories, traverse a convoluted migratory path to reach the neocortex. These interneuron precursors undergo sequential phases of tangential and radial migration before settling into specific laminae during differentiation. Here, we show that the developmental trajectory of FoxG1 expression is dynamically controlled in these interneuron precursors at critical junctures of migration. By utilizing mouse genetic strategies, we elucidate the pivotal role of precise changes in FoxG1 expression levels during interneuron specification and migration. Our findings underscore the gene dosage-dependent function of FoxG1, aligning with clinical observations of FOXG1 haploinsufficiency and duplication in syndromic forms of autism spectrum disorders. In conclusion, our results reveal the finely tuned developmental clock governing cortical interneuron development, driven by temporal dynamics and the dose-dependent actions of FoxG1.


Asunto(s)
Corteza Cerebral , Neocórtex , Ratones , Animales , Corteza Cerebral/metabolismo , Movimiento Celular/fisiología , Neurogénesis/fisiología , Interneuronas/fisiología , Biomarcadores/metabolismo , Neuronas GABAérgicas/fisiología
2.
Nat Commun ; 12(1): 3773, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34145239

RESUMEN

Abnormalities in GABAergic inhibitory circuits have been implicated in the aetiology of autism spectrum disorder (ASD). ASD is caused by genetic and environmental factors. Several genes have been associated with syndromic forms of ASD, including FOXG1. However, when and how dysregulation of FOXG1 can result in defects in inhibitory circuit development and ASD-like social impairments is unclear. Here, we show that increased or decreased FoxG1 expression in both excitatory and inhibitory neurons results in ASD-related circuit and social behavior deficits in our mouse models. We observe that the second postnatal week is the critical period when regulation of FoxG1 expression is required to prevent subsequent ASD-like social impairments. Transplantation of GABAergic precursor cells prior to this critical period and reduction in GABAergic tone via Gad2 mutation ameliorates and exacerbates circuit functionality and social behavioral defects, respectively. Our results provide mechanistic insight into the developmental timing of inhibitory circuit formation underlying ASD-like phenotypes in mouse models.


Asunto(s)
Trastorno del Espectro Autista/genética , Encéfalo/crecimiento & desarrollo , Factores de Transcripción Forkhead/genética , Neuronas GABAérgicas/citología , Proteínas del Tejido Nervioso/genética , Conducta Social , Animales , Encéfalo/fisiología , Modelos Animales de Enfermedad , Neuronas GABAérgicas/trasplante , Glutamato Descarboxilasa/genética , Ratones
3.
J Neurosci ; 39(1): 125-139, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30413647

RESUMEN

Sensory perception depends on neocortical computations that contextually adjust sensory signals in different internal and environmental contexts. Neocortical layer 1 (L1) is the main target of cortical and subcortical inputs that provide "top-down" information for context-dependent sensory processing. Although L1 is devoid of excitatory cells, it contains the distal "tuft" dendrites of pyramidal cells (PCs) located in deeper layers. L1 also contains a poorly characterized population of GABAergic interneurons (INs), which regulate the impact that different top-down inputs have on PCs. A poor comprehension of L1 IN subtypes and how they affect PC activity has hampered our understanding of the mechanisms that underlie contextual modulation of sensory processing. We used novel genetic strategies in male and female mice combined with electrophysiological and morphological methods to help resolve differences that were unclear when using only electrophysiological and/or morphological approaches. We discovered that L1 contains four distinct populations of INs, each with a unique molecular profile, morphology, and electrophysiology, including a previously overlooked IN population (named here "canopy cells") representing 40% of L1 INs. In contrast to what is observed in other layers, most L1 neurons appear to be unique to the layer, highlighting the specialized character of the signal processing that takes place in L1. This new understanding of INs in L1, as well as the application of genetic methods based on the markers described here, will enable investigation of the cellular and circuit mechanisms of top-down processing in L1 with unprecedented detail.SIGNIFICANCE STATEMENT Neocortical layer 1 (L1) is the main target of corticocortical and subcortical projections that mediate top-down or context-dependent sensory perception. However, this unique layer is often referred to as "enigmatic" because its neuronal composition has been difficult to determine. Using a combination of genetic, electrophysiological, and morphological approaches that helped to resolve differences that were unclear when using a single approach, we were able to decipher the neuronal composition of L1. We identified markers that distinguish L1 neurons and found that the layer contains four populations of GABAergic interneurons, each with unique molecular profiles, morphologies, and electrophysiological properties. These findings provide a new framework for studying the circuit mechanisms underlying the processing of top-down inputs in neocortical L1.


Asunto(s)
Interneuronas/fisiología , Neocórtex/citología , Neocórtex/fisiología , Animales , Dendritas/fisiología , Dendritas/ultraestructura , Fenómenos Electrofisiológicos/fisiología , Femenino , Interneuronas/ultraestructura , Masculino , Ratones , Ratones Transgénicos , Neocórtex/ultraestructura , Técnicas de Placa-Clamp , Células Piramidales/fisiología , Células Piramidales/ultraestructura , Ácido gamma-Aminobutírico/fisiología
4.
PLoS Genet ; 13(5): e1006815, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28558011

RESUMEN

Sleep is an ancient animal behavior that is regulated similarly in species ranging from flies to humans. Various genes that regulate sleep have been identified in invertebrates, but whether the functions of these genes are conserved in mammals remains poorly explored. Drosophila insomniac (inc) mutants exhibit severely shortened and fragmented sleep. Inc protein physically associates with the Cullin-3 (Cul3) ubiquitin ligase, and neuronal depletion of Inc or Cul3 strongly curtails sleep, suggesting that Inc is a Cul3 adaptor that directs the ubiquitination of neuronal substrates that impact sleep. Three proteins similar to Inc exist in vertebrates-KCTD2, KCTD5, and KCTD17-but are uncharacterized within the nervous system and their functional conservation with Inc has not been addressed. Here we show that Inc and its mouse orthologs exhibit striking biochemical and functional interchangeability within Cul3 complexes. Remarkably, KCTD2 and KCTD5 restore sleep to inc mutants, indicating that they can substitute for Inc in vivo and engage its neuronal targets relevant to sleep. Inc and its orthologs localize similarly within fly and mammalian neurons and can traffic to synapses, suggesting that their substrates may include synaptic proteins. Consistent with such a mechanism, inc mutants exhibit defects in synaptic structure and physiology, indicating that Inc is essential for both sleep and synaptic function. Our findings reveal that molecular functions of Inc are conserved through ~600 million years of evolution and support the hypothesis that Inc and its orthologs participate in an evolutionarily conserved ubiquitination pathway that links synaptic function and sleep regulation.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/genética , Sueño/genética , Sinapsis/metabolismo , Animales , Secuencia Conservada , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Drosophila/metabolismo , Drosophila/fisiología , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Evolución Molecular , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Canales de Potasio/química , Canales de Potasio/genética , Canales de Potasio/metabolismo , Transporte de Proteínas , Sinapsis/fisiología
5.
Nat Commun ; 6: 8543, 2015 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-26503322

RESUMEN

Insulin activates insulin receptors (InsRs) in the hypothalamus to signal satiety after a meal. However, the rising incidence of obesity, which results in chronically elevated insulin levels, implies that insulin may also act in brain centres that regulate motivation and reward. We report here that insulin can amplify action potential-dependent dopamine (DA) release in the nucleus accumbens (NAc) and caudate-putamen through an indirect mechanism that involves striatal cholinergic interneurons that express InsRs. Furthermore, two different chronic diet manipulations in rats, food restriction (FR) and an obesogenic (OB) diet, oppositely alter the sensitivity of striatal DA release to insulin, with enhanced responsiveness in FR, but loss of responsiveness in OB. Behavioural studies show that intact insulin levels in the NAc shell are necessary for acquisition of preference for the flavour of a paired glucose solution. Together, these data imply that striatal insulin signalling enhances DA release to influence food choices.


Asunto(s)
Neuronas Colinérgicas/metabolismo , Dopamina/metabolismo , Insulina/metabolismo , Interneuronas/metabolismo , Núcleo Accumbens/metabolismo , Obesidad/metabolismo , Obesidad/psicología , Animales , Preferencias Alimentarias , Humanos , Masculino , Ratas , Ratas Sprague-Dawley , Receptor de Insulina/metabolismo , Recompensa , Transducción de Señal
6.
J Neurosci ; 35(37): 12869-89, 2015 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-26377473

RESUMEN

Neurogliaform (RELN+) and bipolar (VIP+) GABAergic interneurons of the mammalian cerebral cortex provide critical inhibition locally within the superficial layers. While these subtypes are known to originate from the embryonic caudal ganglionic eminence (CGE), the specific genetic programs that direct their positioning, maturation, and integration into the cortical network have not been elucidated. Here, we report that in mice expression of the transcription factor Prox1 is selectively maintained in postmitotic CGE-derived cortical interneuron precursors and that loss of Prox1 impairs the integration of these cells into superficial layers. Moreover, Prox1 differentially regulates the postnatal maturation of each specific subtype originating from the CGE (RELN, Calb2/VIP, and VIP). Interestingly, Prox1 promotes the maturation of CGE-derived interneuron subtypes through intrinsic differentiation programs that operate in tandem with extrinsically driven neuronal activity-dependent pathways. Thus Prox1 represents the first identified transcription factor specifically required for the embryonic and postnatal acquisition of CGE-derived cortical interneuron properties. SIGNIFICANCE STATEMENT: Despite the recognition that 30% of GABAergic cortical interneurons originate from the caudal ganglionic eminence (CGE), to date, a specific transcriptional program that selectively regulates the development of these populations has not yet been identified. Moreover, while CGE-derived interneurons display unique patterns of tangential and radial migration and preferentially populate the superficial layers of the cortex, identification of a molecular program that controls these events is lacking.Here, we demonstrate that the homeodomain transcription factor Prox1 is expressed in postmitotic CGE-derived cortical interneuron precursors and is maintained into adulthood. We found that Prox1 function is differentially required during both embryonic and postnatal stages of development to direct the migration, differentiation, circuit integration, and maintenance programs within distinct subtypes of CGE-derived interneurons.


Asunto(s)
Corteza Cerebral/citología , Neuronas GABAérgicas/citología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/fisiología , Interneuronas/citología , Proteínas del Tejido Nervioso/fisiología , Neurogénesis/fisiología , Proteínas Supresoras de Tumor/fisiología , Animales , Biomarcadores , Calbindina 2/análisis , Moléculas de Adhesión Celular Neuronal/análisis , Linaje de la Célula , Movimiento Celular , Corteza Cerebral/embriología , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/patología , Proteínas de la Matriz Extracelular/análisis , Neuronas GABAérgicas/metabolismo , Perfilación de la Expresión Génica , Interneuronas/clasificación , Interneuronas/metabolismo , Ratones , Proteínas del Tejido Nervioso/análisis , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Proteína Reelina , Serina Endopeptidasas/análisis , Proteínas Supresoras de Tumor/deficiencia , Péptido Intestinal Vasoactivo/análisis
7.
Behav Brain Res ; 256: 51-5, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23810416

RESUMEN

The parabigeminal (PBG), pedunculopontine (PPTg), and laterodorsal tegmental (LDTg) nuclei located in the rostral brainstem are the primary sources of the neurotransmitter acetylcholine (ACh) for the midbrain and thalamus, and as part of the ascending reticular activating system, these cholinergic signaling pathways regulate mouse behavioral responses to sensory stimuli. Here, I report that mice harboring a conditional deletion of ACh synthesis specifically within these nuclei (ChAT(En1 KO)) exhibit decreased ultrasonic vocalizations both as pups and adults, consistent with their previously reported hypoactivity when exploring the novel environment of the open field arena. Furthermore, in prepulse inhibition (PPI) tests, ChAT(En1 KO) animals exhibited increased sensorimotor gating in comparison to control littermates. These data suggest that ACh signaling arising from the rostral brainstem modulates animal behavior in part by tuning the levels of sensorimotor gating. Thus, the net effect of this cholinergic activity is to increase sensitivity to environmental stimuli, and loss of this pathway contributes to the hypoactivity in these mutants by raising the sensory threshold for eliciting exploratory behaviors.


Asunto(s)
Acetilcolina/metabolismo , Tronco Encefálico/crecimiento & desarrollo , Tronco Encefálico/fisiología , Colina O-Acetiltransferasa/metabolismo , Inhibición Prepulso/fisiología , Filtrado Sensorial/fisiología , Vocalización Animal/fisiología , Animales , Colina O-Acetiltransferasa/genética , Aprendizaje/fisiología , Masculino , Ratones Noqueados , Actividad Motora/fisiología , Reflejo de Sobresalto/fisiología , Prueba de Desempeño de Rotación con Aceleración Constante , Factores de Tiempo , Ultrasonido
8.
J Neurosci ; 33(3): 1157-68, 2013 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-23325252

RESUMEN

Substantia nigra pars reticulata (SNr) GABAergic neurons are projection neurons that convey output from the basal ganglia to target structures. These neurons exhibit spontaneous regular firing, but also exhibit burst firing in the presence of NMDA or when excitatory glutamatergic input to the SNr is activated. Notably, an increase in burst firing is also seen in Parkinson's disease. Therefore, elucidating conductances that mediate spontaneous activity and changes of firing pattern in these neurons is essential for understanding how the basal ganglia control movement. Using ex vivo slices of guinea pig midbrain, we show that SNr GABAergic neurons express transient receptor potential melastatin 2 (TRPM2) channels that underlie NMDA-induced burst firing. Furthermore, we show that spontaneous firing rate and burst activity are modulated by the reactive oxygen species H(2)O(2) acting via TRPM2 channels. Thus, our results indicate that activation of TRPM2 channels is necessary for burst firing in SNr GABAergic neurons and their responsiveness to modulatory H(2)O(2). These findings have implications not only for normal regulation, but also for Parkinson's disease, which involves excitotoxicity and oxidative stress.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Peróxido de Hidrógeno/farmacología , N-Metilaspartato/farmacología , Sustancia Negra/metabolismo , Canales Catiónicos TRPM/metabolismo , Potenciales de Acción/genética , Animales , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/efectos de los fármacos , Cobayas , Masculino , Técnicas de Placa-Clamp , Sustancia Negra/citología , Sustancia Negra/efectos de los fármacos , Canales Catiónicos TRPM/genética
9.
Nat Commun ; 3: 1172, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23132022

RESUMEN

Dopamine transmission is critical for exploratory motor behaviour. A key regulator is acetylcholine; forebrain acetylcholine regulates striatal dopamine release, whereas brainstem cholinergic inputs regulate the transition of dopamine neurons from tonic to burst firing modes. How these sources of cholinergic activity combine to control dopamine efflux and exploratory motor behaviour is unclear. Here we show that mice lacking total forebrain acetylcholine exhibit enhanced frequency-dependent striatal dopamine release and are hyperactive in a novel environment, whereas mice lacking rostral brainstem acetylcholine are hypoactive. Exploratory motor behaviour is normalized by the removal of both cholinergic sources. Involvement of dopamine in the exploratory motor phenotypes observed in these mutants is indicated by their altered sensitivity to the dopamine D2 receptor antagonist raclopride. These results support a model in which forebrain and brainstem cholinergic systems act in tandem to regulate striatal dopamine signalling for proper control of motor activity.


Asunto(s)
Acetilcolina/metabolismo , Tronco Encefálico/fisiología , Dopamina/metabolismo , Conducta Exploratoria/fisiología , Actividad Motora , Red Nerviosa/fisiología , Prosencéfalo/fisiología , Acetilcolinesterasa/metabolismo , Animales , Antagonistas de los Receptores de Dopamina D2 , Ambiente , Eliminación de Gen , Marcación de Gen , Ratones , Ratones Noqueados , Neostriado/metabolismo , Receptores de Dopamina D2/metabolismo , Transducción de Señal
10.
Neural Dev ; 5: 14, 2010 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-20507551

RESUMEN

BACKGROUND: The mammalian amygdala is composed of two primary functional subdivisions, classified according to whether the major output projection of each nucleus is excitatory or inhibitory. The posterior dorsal and ventral subdivisions of the medial amygdala, which primarily contain inhibitory output neurons, modulate specific aspects of innate socio-sexual and aggressive behaviors. However, the development of the neuronal diversity of this complex and important structure remains to be fully elucidated. RESULTS: Using a combination of genetic fate-mapping and loss-of-function analyses, we examined the contribution and function of Sonic hedgehog (Shh)-expressing and Shh-responsive (Nkx2-1+ and Gli1+) neurons in the medial amygdala. Specifically, we found that Shh- and Nkx2-1-lineage cells contribute differentially to the dorsal and ventral subdivisions of the postnatal medial amygdala. These Shh- and Nkx2-1-lineage neurons express overlapping and non-overlapping inhibitory neuronal markers, such as Calbindin, FoxP2, nNOS and Somatostatin, revealing diverse fate contributions in discrete medial amygdala nuclear subdivisions. Electrophysiological analysis of the Shh-derived neurons additionally reveals an important functional diversity within this lineage in the medial amygdala. Moreover, inducible Gli1CreER(T2) temporal fate mapping shows that early-generated progenitors that respond to Shh signaling also contribute to medial amygdala neuronal diversity. Lastly, analysis of Nkx2-1 mutant mice demonstrates a genetic requirement for Nkx2-1 in inhibitory neuronal specification in the medial amygdala distinct from the requirement for Nkx2-1 in cerebral cortical development. CONCLUSIONS: Taken together, these data reveal a differential contribution of Shh-expressing and Shh-responding cells to medial amygdala neuronal diversity as well as the function of Nkx2-1 in the development of this important limbic system structure.


Asunto(s)
Amígdala del Cerebelo/embriología , Amígdala del Cerebelo/metabolismo , Proteínas Hedgehog/genética , Neurogénesis/genética , Neuronas/metabolismo , Células Madre/metabolismo , Amígdala del Cerebelo/citología , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Hedgehog/biosíntesis , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Inhibición Neural/genética , Neuronas/citología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Células Madre/citología , Factor Nuclear Tiroideo 1 , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína con Dedos de Zinc GLI1
11.
J Neurosci ; 30(5): 1582-94, 2010 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-20130169

RESUMEN

By combining an inducible genetic fate mapping strategy with electrophysiological analysis, we have systematically characterized the populations of cortical GABAergic interneurons that originate from the caudal ganglionic eminence (CGE). Interestingly, compared with medial ganglionic eminence (MGE)-derived cortical interneuron populations, the initiation [embryonic day 12.5 (E12.5)] and peak production (E16.5) of interneurons from this embryonic structure occurs 3 d later in development. Moreover, unlike either pyramidal cells or MGE-derived cortical interneurons, CGE-derived interneurons do not integrate into the cortex in an inside-out manner but preferentially (75%) occupy superficial cortical layers independent of birthdate. In contrast to previous estimates, CGE-derived interneurons are both considerably greater in number (approximately 30% of all cortical interneurons) and diversity (comprised by at least nine distinct subtypes). Furthermore, we found that a large proportion of CGE-derived interneurons, including the neurogliaform subtype, express the glycoprotein Reelin. In fact, most CGE-derived cortical interneurons express either Reelin or vasoactive intestinal polypeptide. Thus, in conjunction with previous studies, we have now determined the spatial and temporal origins of the vast majority of cortical interneuron subtypes.


Asunto(s)
Linaje de la Célula/genética , Corteza Cerebral/citología , Técnicas Genéticas , Interneuronas/citología , Animales , Tipificación del Cuerpo/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Diferenciación Celular/genética , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiología , Proteínas de la Matriz Extracelular/metabolismo , Marcadores Genéticos , Interneuronas/metabolismo , Interneuronas/fisiología , Masculino , Ratones , Proteínas del Tejido Nervioso/metabolismo , Técnicas de Placa-Clamp , Prosencéfalo/citología , Prosencéfalo/fisiología , Proteína Reelina , Serina Endopeptidasas/metabolismo
12.
Neuron ; 64(3): 293-5, 2009 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-19914175

RESUMEN

The proneural gene Math1 is known to be involved in numerous functions within the nervous system, including unconscious proprioception, audition, and arousal. Two recent papers by the Zoghbi group in this issue of Neuron and a recent issue of PNAS now identify a critical role for this gene in the development of brainstem regions critical for conscious proprioception, interoception, and respiration.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Tronco Encefálico/crecimiento & desarrollo , Tronco Encefálico/fisiología , Respiración/genética , Animales , Tronco Encefálico/embriología , Ácido Glutámico/metabolismo , Bulbo Raquídeo/embriología , Bulbo Raquídeo/crecimiento & desarrollo , Bulbo Raquídeo/fisiología , Ratones , Ratones Transgénicos , Vías Nerviosas/embriología , Vías Nerviosas/crecimiento & desarrollo , Vías Nerviosas/fisiología , Neuronas/fisiología , Periodicidad
13.
Neural Dev ; 2: 5, 2007 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-17319963

RESUMEN

BACKGROUND: During the embryonic development of the cerebellum, neurons are produced from progenitor cells located along a ventricular zone within dorsal rhombomere 1 that extends caudally to the roof plate of the fourth ventricle. The apposition of the caudal neuroepithelium and roof plate results in a unique inductive region termed the cerebellar rhombic lip, which gives rise to granule cell precursors and other glutamatergic neuronal lineages. Recently, we and others have shown that, at early embryonic stages prior to the emergence of granule cell precursors (E12), waves of neurogenesis in the cerebellar rhombic lip produce specific hindbrain nuclei followed by deep cerebellar neurons. How the induction of rhombic lip-derived neurons from cerebellar progenitors is regulated during this phase of cerebellar development to produce these temporally discrete neuronal populations while maintaining a progenitor pool for subsequent neurogenesis is not known. RESULTS: Employing both gain- and loss-of-function methods, we find that Notch1 signaling in the cerebellar primordium regulates the responsiveness of progenitor cells to bone morphogenetic proteins (BMPs) secreted from the roof plate that stimulate the production of rhombic lip-derived neurons. In the absence of Notch1, cerebellar progenitors are depleted during the early production of hindbrain neurons, resulting in a severe decrease in the deep cerebellar nuclei that are normally born subsequently. Mechanistically, we demonstrate that Notch1 activity prevents the induction of Math1 by antagonizing the BMP receptor-signaling pathway at the level of Msx2 expression. CONCLUSION: Our results provide a mechanism by which a balance between neural induction and maintenance of neural progenitors is achieved in the rhombic lip throughout embryonic development.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular/genética , Cerebelo/embriología , Neuronas/metabolismo , Receptores Notch/metabolismo , Células Madre/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Receptores de Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Cerebelo/citología , Cerebelo/metabolismo , Embrión de Pollo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Noqueados , Células Neuroepiteliales/citología , Células Neuroepiteliales/metabolismo , Neuronas/citología , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptores Notch/genética , Transducción de Señal/genética , Células Madre/citología
14.
Development ; 132(20): 4497-508, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16162650

RESUMEN

The existence of stem cells in the adult nervous system is well recognized; however, the potential of these cells is still widely debated. We demonstrate that neural stem cells exist within the embryonic and adult cerebellum. Comparing the potential of neural stem cells derived from the forebrain and cerebellum, we find that progeny derived from each of these brain regions retain regional character in vitro as well as after homotopic transplantation. However, when ectopically transplanted, neurosphere-derived cells from either region are largely unable to generate neurons. With regard specifically to embryonic and adult cerebellar stem cells, we observe that they are able to give rise to neurons that resemble different select classes of cerebellar subclasses when grafted into the perinatal host cerebellum. Most notably, upon transplantation to the perinatal cerebellum, cerebellar stem cells from all ages are able to acquire the position and mature electrophysiological properties of cerebellar granule cells.


Asunto(s)
Cerebelo/citología , Cerebelo/embriología , Células Madre Multipotentes/citología , Prosencéfalo/citología , Prosencéfalo/embriología , Envejecimiento/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Linaje de la Célula , Cerebelo/metabolismo , Genes Reporteros/genética , Ratones , Células Madre Multipotentes/metabolismo , Neuronas/citología , Neuronas/metabolismo , Fenotipo , Prosencéfalo/metabolismo , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA