Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Front Integr Neurosci ; 17: 1242278, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37901799

RESUMEN

Objective: This study evaluated the antihyperalgesic and anti-inflammatory effects of percutaneous vagus nerve electrical stimulation (pVNS) associated with physical exercise, i.e., swimming, in mice with peripheral inflammation. Methods: The pain model was induced by intraplantar (i.pl.) injection of Freund's complete adjuvant (CFA). Sixty-four male Swiss mice (35-40 g) received an i.pl. of CFA and underwent behavioral tests, i.e., mechanical hyperalgesia, edema, and paw temperature tests. Additionally, cytokine levels, specifically interleukin-6 (IL-6) and interleukin-10 (IL-10), were determined by enzyme-linked immunosorbent assay. Mice were treated with swimming exercise for 30 min alone or associated with different time protocols (10, 20, or 30 min) of stimulation in the left ear with random frequency during four consecutive days. Results: pVNS for 20 min prolonged the antihyperalgesic effect for up to 2 h, 24 h after CFA injection. pVNS for 30 min prolonged the antihyperalgesic effect for up to 7 h, 96 h after CFA injection. However, it did not alter the edema or temperature at both analyzed times (24 and 96 h). Furthermore, the combination of pVNS plus swimming exercise, but not swimming exercise alone, reduced IL-6 levels in the paw and spinal cord, as well as IL-10 levels in the spinal cord. Conclusion: pVNS potentiates the analgesic effect induced by swimming, which may be, at least in part, mediated by the modulation of inflammatory cytokines in the periphery (paw) and central nervous system (spinal cord). Therefore, the combination of these therapies may serve as an important adjunctive treatment for persistent inflammatory pain.

2.
Neurosci Biobehav Rev ; 152: 105324, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37467905

RESUMEN

BACKGROUND: complex regional pain syndrome (CRPS) leads to a debilitating chronic pain condition. The lack of cause, etiology, and treatment for CRPS has been widely explored in animal models. OBJECTIVE: Provide a comprehensive framework of the animal models used for investigating CRPS. ELIGIBILITY CRITERIA: Preclinical studies to induce the characteristics of CRPS, with a control group, in any language or publication date. SOURCES OF EVIDENCE: The search was performed in the Medline (PubMed) and ScienceDirect databases. RESULTS: 93 studies are included. The main objective of the included studies was to understand the CRPS model. Rats, males and adults, exposed to ischemia/reperfusion of the paw or fracture of the tibia were the most common characteristics. Nociceptive evaluation using von Frey monofilaments was the most widely adopted in the studies. CONCLUSIONS: For the best translational science between the animal models and individuals with CRPS, future studies should include more heterogeneous animals, and multiple assessment tools, in addition to improving the description and performance of measures that reduce the risk of bias.


Asunto(s)
Dolor Crónico , Síndromes de Dolor Regional Complejo , Masculino , Ratas , Animales , Síndromes de Dolor Regional Complejo/tratamiento farmacológico , Síndromes de Dolor Regional Complejo/etiología , Modelos Animales de Enfermedad , Dimensión del Dolor
3.
Front Integr Neurosci ; 16: 840249, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35431823

RESUMEN

Complex regional pain syndrome type I (CRPS-I) is a condition that responds poorly to treatments. The role of omega-3 fatty acids in the treatment of inflammatory disorders is well described in the literature; however, few studies have evaluated its therapeutic benefits in different types of pain. We evaluated the potential antihyperalgesic and anti-inflammatory effects of preventive omega-3 supplementation in an animal model of CRPS-I. In experiment 1, Swiss female mice were supplemented for 30 days with omega-3 before the induction of the CRPS-I model and 14 days after. Mechanical hyperalgesia was evaluated at baseline and from the 4th to the 14th day after CPRS-I induction along with open field locomotor activity after 30 days of supplementation. In experiment 2, Swiss female mice were supplemented for 30 days with omega-3 and then subjected to the CRPS-I model. Twenty-four hours later the animals were euthanized, and tissue samples of the spinal cord and right posterior paw muscle were taken to measure pro-inflammatory cytokine TNF and IL-1ß concentrations. Omega-3 supplementation produced antihyperalgesic and anti-inflammatory effects, as well as reducing pro-inflammatory cytokine concentrations, without altering the animals' locomotion. No open field locomotor changes were found. The 30-day supplementation at the tested dose was effective in the CRPS-I model.

4.
Front Integr Neurosci ; 16: 818692, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35391753

RESUMEN

Objective: Complex regional pain syndrome (CRPS) is usually triggered by trauma or a surgical procedure, and it typically becomes an established one after an intense inflammatory process with chronic pain and edema as the main symptoms. Available treatments for CRPS have low efficacy. This study aimed to evaluate the clinical and immunoregulatory effects of omega-3 polyunsaturated fatty acid (PUFA) supplementation on paw edema and anti- and pro-inflammatory cytokines and macrophage phenotypes in the chronic post-ischemia pain (CPIP) preclinical model of CRPS-Type I. Methods: Female Swiss mice were supplemented with omega-3, corn oil, or saline and then submitted to the CPIP model of ischemia/reperfusion (I/R) injury. Supplementation was carried out for 30 days prior to and up to 2 or 15 days after the induction of CPIP, according to experimental protocols. The supplementation protocol included 1,500 mg/kg of omega-3 or corn oil through an intragastric route (gavage). Paw edema, interleukin- (IL-) 4, IL-10, transforming growth factor-ß1 (TGF-ß1), monocyte chemotactic protein-1 (MCP-1), and tumor necrosis factor (TNF) were then measured in the paw skin and muscle by enzyme-linked immunosorbent assay (ELISA), and macrophage phenotypes (M1 and M2) assessed in the paw muscle by Western blotting. Results: The CPIP model induced an increase in paw thickness up to 72 h post-I/R. Mice supplemented with omega-3 compared to the saline group displayed reduced edema but neither altered skin IL-4 or skin and muscle TGF-ß1, TNF, and MCP-1 concentrations, nor did they exhibit significantly altered muscle macrophage phenotype on the 2nd-day post-CPIP. However, omega-3 supplementation reversed the I/R-related reduction in IL-4 in the paw muscle compared to groups supplemented with saline and corn oil. Furthermore, omega-3 promoted the reduction of IL-10 levels in the paw skin, compared to animals with lesions supplemented with saline, until the 2nd-day post-CPIP. On the 15th day post-CPIP, IL-10 was significantly increased in the muscle of animals supplemented with omega-3 compared to the saline group. Conclusion: The results suggest that omega-3 PUFA supplementation has anti-inflammatory effects in the CPIP model of CRPS-Type I, significantly reducing paw edema and regulating concentrations of anti-inflammatory cytokines, including IL-4 and IL-10.

5.
Front Physiol ; 12: 816624, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095573

RESUMEN

OBJECTIVE: This study aims to investigate the effects of ankle joint mobilization (AJM) on mechanical hyperalgesia and peripheral and central inflammatory biomarkers after intraplantar (i.pl.) Complete Freund's Adjuvant (CFA)-induced inflammation. METHODS: Male Swiss mice were randomly assigned to 3 groups (n = 7): Saline/Sham, CFA/Sham, and CFA/AJM. Five AJM sessions were carried out at 6, 24, 48, 72, and 96 h after CFA injection. von Frey test was used to assess mechanical hyperalgesia. Tissues from paw skin, paw muscle and spinal cord were collected to measure pro-inflammatory (TNF, IL-1ß) and anti-inflammatory cytokines (IL-4, IL-10, and TGF-ß1) by ELISA. The macrophage phenotype at the inflammation site was evaluated by Western blotting assay using the Nitric Oxide Synthase 2 (NOS 2) and Arginase-1 immunocontent to identify M1 and M2 macrophages, respectively. RESULTS: Our results confirm a consistent analgesic effect of AJM following the second treatment session. AJM did not change cytokines levels at the inflammatory site, although it promoted a reduction in M2 macrophages. Also, there was a reduction in the levels of pro-inflammatory cytokines IL-1ß and TNF in the spinal cord. CONCLUSION: Taken together, the results confirm the anti-hyperalgesic effect of AJM and suggest a central neuroimmunomodulatory effect in a model of persistent inflammation targeting the pro-inflammatory cytokines IL-1ß and TNF.

6.
Neurochem Res ; 45(12): 2868-2883, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32968860

RESUMEN

Recent evidence suggests that young rodents submitted to high fructose (FRU) diet develop metabolic, and cognitive dysfunctions. However, it remains unclear whether these detrimental effects of FRU intake can also be observed in middle-aged mice. Nine months-old C57BL/6 female mice were fed with water (Control) or 10% FRU in drinking water during 12 weeks. After that, metabolic, and neurochemical alterations were evaluated, focusing on neurotransmitters, and antioxidant defenses. Behavioral parameters related to motor activity, memory, anxiety, and depression were also evaluated. Mice consuming FRU diet displayed increased water, and caloric intake, resulting in weight gain, which was partially compensated due to decreased food pellet intake. FRU fed animals displayed increased plasma glucose, and cholesterol levels, which was not observed in overnight-fasted animals. Superoxide dismutase (SOD), and catalase (CAT) activities were markedly decreased in the prefrontal cortex of animals receiving FRU diet, while glutathione peroxidase (GPx) slightly increased. Liver (lower GPx), striatum (higher SOD and lower CAT), and hippocampus (no changes) were less impacted. No changes were observed in glutathione reductase, and thioredoxin reductase activities, two ancillary enzymes for peroxide detoxification. FRU intake did not alter serotonin, dopamine, and norepinephrine levels in the hippocampus, prefrontal cortex, and striatum. No significant alterations were observed in working, and short-term spatial memory; and in anxiety- and depressive-like behaviors in animals treated with FRU. Increased locomotor activity was observed in FRU-fed middle-aged mice, as evaluated in the open field, elevated plus-maze, Y maze, and object location tasks. Overall, these results demonstrate that high FRU consumption can disturb antioxidant defenses, and increase locomotor activity in middle-aged mice, open the opportunity for further studies to address the underlying mechanisms related to these findings.


Asunto(s)
Catalasa/metabolismo , Fructosa/farmacología , Locomoción/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Prueba de Laberinto Elevado , Femenino , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones Endogámicos C57BL , Prueba de Campo Abierto/efectos de los fármacos
7.
Neurotoxicology ; 80: 144-154, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32738267

RESUMEN

Exposure to fungicide ziram (zinc dimethyldithiocarbamate) has been associated with increased incidence of Parkinson's disease (PD). We recently demonstrated that the intranasal (i.n.) administration of sodium dimethyldithiocarbamate (NaDMDC, a more soluble salt than ziram) induces PD-like behavioral and neurochemical alterations in mice. We now investigated the putative neuroprotective effects of melatonin on behavioral dificits and neurochemical alterations induced by i.n. NaDMDC. Melatonin treatment (3, 10 or 30 mg/kg, i.p.) was given 1 h before NaDMDC administration (1 mg/nostril) during 4 consecutive days and we evaluated early (up to 7 days) and late (up to 35 days) NaDMDC-induced behavioral and neurochemical alterations. Melatonin treatment protected against early motor and general neurological impairments observed in the open field and neurological score of severity, respectively, and late deficits in rotarod test. Melatonin prevented the NaDMDC-induced alterations in the striatal tyrosine hydroxylase immunocontent. Melatonin also protected against increased levels of oxidative stress markers (4-hydroxynonenal and 3-nitrotyrosine) in the striatum, as well as the NaDMDC-induced increase of 4-hydroxynonenal and TNF, markers of oxidative stress and inflammation, respectively, in the olfactory bulb. These results further detail the mechanisms underlying NaDMDC toxicity and demonstrate the neuroprotective effects of melatonin against the neuronal damage induced by NaDMDC.


Asunto(s)
Encéfalo/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Melatonina/farmacología , Fármacos Neuroprotectores/farmacología , Síndromes de Neurotoxicidad/prevención & control , Administración Intranasal , Animales , Conducta Animal/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatología , Dimetilditiocarbamato , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Masculino , Ratones , Actividad Motora/efectos de los fármacos , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/metabolismo , Síndromes de Neurotoxicidad/fisiopatología , Estrés Nitrosativo/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
8.
Neurotox Res ; 34(4): 808-819, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29808370

RESUMEN

Depression is a highly prevalent and debilitating non-motor symptom observed during the early stages of Parkinson's disease (PD). Although PD prevalence is higher in men, the depressive symptoms in PD are more common in women. Therefore, the aim of this study was to investigate the development of anhedonic- and depressive-like behaviors in male and female mice and the potential mechanisms related to depressive symptoms in an experimental model of PD. Young adult male and female C57BL/6 mice (3 months old) received a single intranasal (i.n.) administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and were submitted to a battery of behavioral tasks (sucrose consumption, splash test, tail suspension, forced swimming and open field tests) to assess their emotional and motor profiles. Considering the role of sexual hormones in emotional behaviors, the same protocol of i.n. MPTP administration and the splash, tail suspension, and open field tests were conducted in ovariectomized (OVX) and aged C57BL/6 female (20 months old) mice. We also investigated the immunocontent of neurotrophins (BDNF, GDNF, and VEGF) in the hippocampus and prefrontal cortex by western blot. I.n.  MPTP administration induced more pronounced anhedonic- and selective depressive-like behaviors in female adult mice, also observed in OVX and aged female mice, with the absence of motor impairments. Furthermore, MPTP induced a more pronounced depletion of neurotrophins in the prefrontal cortex and hippocampus in female than male mice. This study provides new evidence of increased susceptibility of female mice to anhedonic- and depressive-like behaviors following i.n. MPTP administration. The observed gender-related effects of MPTP on emotional parameters seem to be linked to increased depletion of neurotrophins (particularly BDNF and GDNF) in the hippocampus and prefrontal cortex of female mice.


Asunto(s)
Anhedonia/fisiología , Depresión/fisiopatología , Intoxicación por MPTP/fisiopatología , Intoxicación por MPTP/psicología , Administración Intranasal , Envejecimiento/fisiología , Anhedonia/efectos de los fármacos , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Depresión/inducido químicamente , Femenino , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Ovariectomía , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Factores Sexuales , Tirosina 3-Monooxigenasa/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
9.
Neurochem Res ; 43(3): 745-759, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29362970

RESUMEN

Systemic inflammation triggered by lipopolysaccharide (LPS) administration disrupts blood-brain barrier (BBB) homeostasis in animal models. This event leads to increased susceptibility of several encephalic structures to potential neurotoxicants present in the bloodstream. In this study, we investigated the effects of alternate intraperitoneal injections of LPS on BBB permeability, social recognition memory and biochemical parameters in the striatum 24 h and 60 days after treatments. In addition, we investigated whether the exposure to a moderate neurotoxic dose of the herbicide paraquat could potentiate LPS-induced neurotoxicity. LPS administration caused a transient disruption of BBB integrity, evidenced by increased levels of exogenously administered sodium fluorescein in the striatum. Also, LPS exposure caused delayed impairment in social recognition memory (evaluated at day 38 after treatments) and increase in the striatal levels of 3-nitrotyrosine. These events were observed in the absence of significant changes in motor coordination and in the levels of tyrosine hydroxylase (TH) in the striatum and substantia nigra. PQ exposure, which caused a long-lasting decrease of striatal mitochondrial complex I activity, did not modify LPS-induced behavioral and striatal biochemical changes. The results indicate that systemic administration of LPS causes delayed social recognition memory deficit and striatal nitrosative stress in adult mice and that the coexposure to a moderately toxic dose of PQ did not magnify these events. In addition, PQ-induced inhibition of striatal mitochondrial complex I was also not magnified by LPS exposure, indicating the absence of synergic neurotoxic effects of LPS and PQ in this experimental model.


Asunto(s)
Conducta Animal/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Lipopolisacáridos/farmacología , Estrés Nitrosativo/efectos de los fármacos , Paraquat/toxicidad , Animales , Cuerpo Estriado/metabolismo , Masculino , Memoria/efectos de los fármacos , Ratones , Neostriado/efectos de los fármacos , Neostriado/metabolismo , Síndromes de Neurotoxicidad/tratamiento farmacológico , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo
10.
Oxid Med Cell Longev ; 2016: 3472032, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27829983

RESUMEN

Melatonin is synthesized by several tissues besides the pineal gland, and beyond its regulatory effects in light-dark cycle, melatonin is a hormone with neuroprotective, anti-inflammatory, and antioxidant properties. Melatonin acts as a free-radical scavenger, reducing reactive species and improving mitochondrial homeostasis. Melatonin also regulates the expression of neurotrophins that are involved in the survival of dopaminergic neurons and reduces α-synuclein aggregation, thus protecting the dopaminergic system against damage. The unbalance of pineal melatonin synthesis can predispose the organism to inflammatory and neurodegenerative diseases such as Parkinson's disease (PD). The aim of this review is to summarize the knowledge about the potential role of the melatoninergic system in the pathogenesis and treatment of PD. The literature reviewed here indicates that PD is associated with impaired brain expression of melatonin and its receptors MT1 and MT2. Exogenous melatonin treatment presented an outstanding neuroprotective effect in animal models of PD induced by different toxins, such as 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone, paraquat, and maneb. Despite the neuroprotective effects and the improvement of motor impairments, melatonin also presents the potential to improve nonmotor symptoms commonly experienced by PD patients such as sleep and anxiety disorders, depression, and memory dysfunction.


Asunto(s)
Melatonina/farmacología , Enfermedad de Parkinson/genética , Humanos , Neuroprotección , Enfermedad de Parkinson/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA