Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Alzheimers Dis ; 95(2): 399-405, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37545238

RESUMEN

The prevalence of Alzheimer's disease is greater in women, but the underlying mechanisms remain to be elucidated. We herein demonstrated that α-secretase ADAM10 was downregulated and ADAM10 inhibitor sFRP1 was upregulated in 5xFAD mice. While there were no sex effects on ADAM10 protein and sFRP1 mRNA levels, female 5xFAD and age-matched non-transgenic mice exhibited higher levels of sFRP1 protein than corresponding male mice. Importantly, female 5xFAD mice accumulated more Aß than males, and sFRP1 protein levels were positively associated with Aß42 levels in 5xFAD mice. Our study suggests that sFRP1 is associated with amyloid pathology in a sex-dependent manner.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Animales , Femenino , Masculino , Ratones , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Enfermedad de Alzheimer/patología , Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas Amiloidogénicas/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Ratones Transgénicos , Regulación hacia Arriba
2.
Stem Cell Res Ther ; 14(1): 214, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37605285

RESUMEN

BACKGROUND: The apolipoprotein E (APOE) gene is the strongest genetic risk factor for Alzheimer's disease (AD); however, how it modulates brain homeostasis is not clear. The apoE protein is a major lipid carrier in the brain transporting lipids such as cholesterol among different brain cell types. METHODS: We generated three-dimensional (3-D) cerebral organoids from human parental iPSC lines and its isogenic APOE-deficient (APOE-/-) iPSC line. To elucidate the cell-type-specific effects of APOE deficiency in the cerebral organoids, we performed scRNA-seq in the parental and APOE-/- cerebral organoids at Day 90. RESULTS: We show that APOE deficiency in human iPSC-derived cerebral organoids impacts brain lipid homeostasis by modulating multiple cellular and molecular pathways. Molecular profiling through single-cell RNA sequencing revealed that APOE deficiency leads to changes in cellular composition of isogenic cerebral organoids likely by modulating the eukaryotic initiation factor 2 (EIF2) signaling pathway as these events were alleviated by the treatment of an integrated stress response inhibitor (ISRIB). APOE deletion also leads to activation of the Wnt/ß-catenin signaling pathway with concomitant decrease of secreted frizzled-related protein 1 (SFRP1) expression in glia cells. Importantly, the critical role of apoE in cell-type-specific lipid homeostasis was observed upon APOE deletion in cerebral organoids with a specific upregulation of cholesterol biosynthesis in excitatory neurons and excessive lipid accumulation in astrocytes. Relevant to human AD, APOE4 cerebral organoids show altered neurogenesis and cholesterol metabolism compared to those with APOE3. CONCLUSIONS: Our work demonstrates critical roles of apoE in brain homeostasis and offers critical insights into the APOE4-related pathogenic mechanisms.


Asunto(s)
Apolipoproteínas E , Cerebro , Células Madre Pluripotentes Inducidas , Humanos , Apolipoproteína E4 , Apolipoproteínas E/genética , Diferenciación Celular , Organoides , Cerebro/metabolismo
3.
Mol Neurobiol ; 60(1): 26-35, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36215026

RESUMEN

Wnt and R-spondin (Rspo) proteins are two major types of endogenous Wnt/ß-catenin signaling agonists. While Wnt/ß-catenin signaling is greatly diminished in Alzheimer's disease (AD), it remains to be elucidated whether the inhibition of this pathway is associated with dysregulation of Wnt and Rspo proteins. By analyzing temporal cortex RNA-seq data of the human postmortem brain samples, we found that WNT1 and RRPO2 were significantly downregulated in human AD brains. In addition, the expression of Wnt acyltransferase porcupine (PORCN), which is essential for Wnt maturation and secretion, was greatly deceased in these human AD brains. Interestingly, the lowest levels of WNT1, PORCN, and RSPO2 expression were found in human AD brains carrying two copies of APOE4 allele, the strongest genetic risk factor of late-onset AD. Importantly, there were positive correlations among the levels of WNT1, PORCN, and RSPO2 expression in human AD brains. Supporting observations in humans, Wnt1, PORCN, and Rspo2 were downregulated and Wnt/ß-catenin signaling was diminished in the 5xFAD amyloid model mice. In human APOE-targeted replacement mice, downregulation of WNT1, PORCN, and RSPO2 expression was positively associated with aging and APOE4 genotype. Finally, WNT1 and PORCN expression and Wnt/ß-catenin signaling were inhibited in human APOE4 iPSC-derived astrocytes when compared to the isogenic APOE3 iPSC-derived astrocytes. Altogether, our findings suggest that the dysregulations of Wnt1, PORCN, and Rspo2 could be coordinated together to diminish Wnt/ß-catenin signaling in aging- and APOE4-dependent manners in the AD brain.


Asunto(s)
Enfermedad de Alzheimer , Péptidos y Proteínas de Señalización Intercelular , Proteínas de la Membrana , Vía de Señalización Wnt , Animales , Humanos , Ratones , Aciltransferasas/metabolismo , Enfermedad de Alzheimer/genética , Apolipoproteína E4/genética , Regulación hacia Abajo , Proteínas de la Membrana/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo
4.
Neurobiol Aging ; 115: 20-28, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35453035

RESUMEN

APOE4 is the first identified genetic risk factor and remains as the strongest predictor for late-onset Alzheimer's disease (AD). Studies of AD patients, AD patient-specific induced pluripotent stem cell-derived neurons and cerebral organoids, and human apoE4-expressing and apoE-deficient mouse models clearly demonstrate that apoE4 provokes neuroinflammation, impairs cerebrovasculature, and exacerbates amyloid and tau pathologies. ApoE expression is greatly up-regulated in disease-associated microglia in mouse models of amyloidosis and in human microglia from AD brains. Importantly, genetic knock-down or depletion of apoE in mice greatly attenuates neuroinflammation and alleviates amyloid and tau pathologies. Similar beneficial effects can be achieved when apoE reduction is induced by the overexpression of apoE metabolic receptor LDLR. Toward therapeutic implications, administration of apoE antisense oligonucleotides or apoE siRNAs leads to significant pharmacologic effects, i.e., significant alleviation of AD pathologies in mouse models. Therefore, apoE reduction represents a promising therapeutic strategy for the treatment of AD patients carrying the APOE ε4 allele. In this review, we summarize evidence and rationale on why and how we target apoE4 reduction for AD therapy.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/terapia , Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteínas E/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA